haystack/test/agents/test_agent.py

318 lines
11 KiB
Python
Raw Normal View History

import logging
import os
2023-03-17 18:21:14 +01:00
import re
from typing import Tuple
from unittest.mock import patch
from test.conftest import MockRetriever, MockPromptNode
from unittest import mock
import pytest
from haystack import BaseComponent, Answer, Document
2023-03-17 18:21:14 +01:00
from haystack.agents import Agent, AgentStep
from haystack.agents.base import Tool, ToolsManager
from haystack.nodes import PromptModel, PromptNode, PromptTemplate
from haystack.pipelines import ExtractiveQAPipeline, DocumentSearchPipeline, BaseStandardPipeline
2023-02-23 13:03:45 +01:00
@pytest.mark.unit
def test_add_and_overwrite_tool():
# Add a Node as a Tool to an Agent
agent = Agent(prompt_node=MockPromptNode())
retriever = MockRetriever()
agent.add_tool(
Tool(
name="Retriever",
pipeline_or_node=retriever,
description="useful for when you need to " "retrieve documents from your index",
)
)
assert len(agent.tm.tools) == 1
assert agent.has_tool(tool_name="Retriever")
assert isinstance(agent.tm.tools["Retriever"].pipeline_or_node, BaseComponent)
agent.add_tool(
Tool(
name="Retriever",
pipeline_or_node=retriever,
description="useful for when you need to retrieve documents from your index",
)
)
# Add a Pipeline as a Tool to an Agent and overwrite the previously added Tool
retriever_pipeline = DocumentSearchPipeline(MockRetriever())
agent.add_tool(
Tool(
name="Retriever",
pipeline_or_node=retriever_pipeline,
description="useful for when you need to retrieve documents from your index",
)
)
assert len(agent.tm.tools) == 1
assert agent.has_tool(tool_name="Retriever")
assert isinstance(agent.tm.tools["Retriever"].pipeline_or_node, BaseStandardPipeline)
2023-02-23 13:03:45 +01:00
@pytest.mark.unit
2023-03-17 18:21:14 +01:00
def test_max_steps(caplog, monkeypatch):
# Run an Agent and stop because max_steps is reached
agent = Agent(prompt_node=MockPromptNode(), max_steps=3)
retriever = MockRetriever()
agent.add_tool(
Tool(
name="Retriever",
pipeline_or_node=retriever,
description="useful for when you need to retrieve documents from your index",
output_variable="documents",
)
)
# Let the Agent always choose "Retriever" as the Tool with "" as input
def mock_extract_tool_name_and_tool_input(self, pred: str) -> Tuple[str, str]:
return "Retriever", ""
monkeypatch.setattr(ToolsManager, "extract_tool_name_and_tool_input", mock_extract_tool_name_and_tool_input)
2023-03-17 18:21:14 +01:00
# Using max_steps as specified in the Agent's init method
with caplog.at_level(logging.WARN, logger="haystack.agents"):
result = agent.run("Where does Christelle live?")
assert result["answers"] == [Answer(answer="", type="generative")]
assert "maximum number of iterations (3)" in caplog.text.lower()
2023-03-17 18:21:14 +01:00
# Setting max_steps in the Agent's run method
with caplog.at_level(logging.WARN, logger="haystack.agents"):
2023-03-17 18:21:14 +01:00
result = agent.run("Where does Christelle live?", max_steps=2)
assert result["answers"] == [Answer(answer="", type="generative")]
assert "maximum number of iterations (2)" in caplog.text.lower()
2023-02-23 13:03:45 +01:00
@pytest.mark.unit
def test_run_tool():
agent = Agent(prompt_node=MockPromptNode())
retriever = MockRetriever()
agent.add_tool(
Tool(
name="Retriever",
pipeline_or_node=retriever,
description="useful for when you need to retrieve documents from your index",
output_variable="documents",
)
)
2023-03-17 18:21:14 +01:00
pn_response = "need to find out what city he was born.\nTool: Retriever\nTool Input: Where was Jeremy McKinnon born"
step = AgentStep(prompt_node_response=pn_response)
result = agent.tm.run_tool(step.prompt_node_response)
assert result == "[]" # empty list of documents
2023-02-23 13:03:45 +01:00
@pytest.mark.unit
def test_extract_final_answer():
2023-03-17 18:21:14 +01:00
match_examples = [
"have the final answer to the question.\nFinal Answer: Florida",
"Final Answer: 42 is the answer",
"Final Answer: 1234",
"Final Answer: Answer",
"Final Answer: This list: one and two and three",
"Final Answer:42",
"Final Answer: ",
"Final Answer: The answer is 99 ",
]
expected_answers = [
"Florida",
"42 is the answer",
"1234",
"Answer",
"This list: one and two and three",
"42",
"",
"The answer is 99",
]
for example, expected_answer in zip(match_examples, expected_answers):
2023-05-17 15:19:09 +02:00
agent_step = AgentStep(prompt_node_response=example, final_answer_pattern=r"Final Answer\s*:\s*(.*)")
final_answer = agent_step.final_answer(query="irrelevant")
assert final_answer["answers"][0].answer == expected_answer
2023-03-17 18:21:14 +01:00
@pytest.mark.unit
def test_final_answer_regex():
match_examples = [
"Final Answer: 42 is the answer",
"Final Answer: 1234",
"Final Answer: Answer",
"Final Answer: This list: one and two and three",
"Final Answer:42",
"Final Answer: ",
"Final Answer: The answer is 99 ",
]
non_match_examples = ["Final answer: 42 is the answer", "Final Answer", "The final answer is: 100"]
final_answer_pattern = r"Final Answer\s*:\s*(.*)"
for example in match_examples:
match = re.match(final_answer_pattern, example)
assert match is not None
for example in non_match_examples:
match = re.match(final_answer_pattern, example)
assert match is None
@pytest.mark.integration
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
@pytest.mark.parametrize("retriever_with_docs, document_store_with_docs", [("bm25", "memory")], indirect=True)
def test_tool_result_extraction(reader, retriever_with_docs):
# Test that the result of a Tool is correctly extracted as a string
# Pipeline as a Tool
search = ExtractiveQAPipeline(reader, retriever_with_docs)
t = Tool(
name="Search",
pipeline_or_node=search,
description="useful for when you need to answer "
"questions about where people live. You "
"should ask targeted questions",
output_variable="answers",
)
result = t.run("Where does Christelle live?")
assert isinstance(result, str)
assert result == "Paris" or result == "Madrid"
# PromptNode as a Tool
pt = PromptTemplate("Here is a question: {query}, Answer:")
pn = PromptNode(default_prompt_template=pt)
t = Tool(name="Search", pipeline_or_node=pn, description="N/A", output_variable="results")
result = t.run(tool_input="What is the capital of Germany?")
assert isinstance(result, str)
assert "berlin" in result.lower()
# Retriever as a Tool
t = Tool(
name="Retriever",
pipeline_or_node=retriever_with_docs,
description="useful for when you need to retrieve documents from your index",
output_variable="documents",
)
result = t.run(tool_input="Where does Christelle live?")
assert isinstance(result, str)
assert "Christelle" in result
2023-05-09 20:26:59 +02:00
@pytest.mark.skip("FIXME")
@pytest.mark.integration
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
@pytest.mark.parametrize("retriever_with_docs, document_store_with_docs", [("bm25", "memory")], indirect=True)
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Please export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
def test_agent_run(reader, retriever_with_docs, document_store_with_docs):
search = ExtractiveQAPipeline(reader, retriever_with_docs)
prompt_model = PromptModel(model_name_or_path="gpt-3.5-turbo", api_key=os.environ.get("OPENAI_API_KEY"))
prompt_node = PromptNode(model_name_or_path=prompt_model, stop_words=["Observation:"])
country_finder = PromptNode(
model_name_or_path=prompt_model,
default_prompt_template=PromptTemplate(
"When I give you a name of the city, respond with the country where the city is located.\n"
"City: Rome\nCountry: Italy\n"
"City: Berlin\nCountry: Germany\n"
"City: Belgrade\nCountry: Serbia\n"
"City: {query}?\nCountry: "
),
)
2023-05-17 15:19:09 +02:00
agent = Agent(prompt_node=prompt_node, max_steps=12)
agent.add_tool(
Tool(
name="Search",
pipeline_or_node=search,
description="useful for when you need to answer "
"questions about where people live. You "
"should ask targeted questions",
output_variable="answers",
)
)
agent.add_tool(
Tool(
name="CountryFinder",
pipeline_or_node=country_finder,
description="useful for when you need to find the country where a city is located",
)
)
result = agent.run("Where is Madrid?")
country = result["answers"][0].answer
assert "spain" in country.lower()
result = agent.run("In which country is the city where Christelle lives?")
country = result["answers"][0].answer
assert "france" in country.lower()
@pytest.mark.unit
def test_update_hash():
agent = Agent(prompt_node=MockPromptNode(), prompt_template=mock.Mock())
assert agent.hash == "d41d8cd98f00b204e9800998ecf8427e"
agent.add_tool(
Tool(
name="Search",
pipeline_or_node=mock.Mock(),
description="useful for when you need to answer "
"questions about where people live. You "
"should ask targeted questions",
output_variable="answers",
)
)
assert agent.hash == "d41d8cd98f00b204e9800998ecf8427e"
agent.add_tool(
Tool(
name="Count",
pipeline_or_node=mock.Mock(),
description="useful for when you need to count how many characters are in a word. Ask only with a single word.",
)
)
assert agent.hash == "d41d8cd98f00b204e9800998ecf8427e"
agent.update_hash()
assert agent.hash == "5ac8eca2f92c9545adcce3682b80d4c5"
2023-05-17 15:19:09 +02:00
@pytest.mark.unit
def test_tool_fails_processing_dict_result():
tool = Tool(name="name", pipeline_or_node=MockPromptNode(), description="description")
with pytest.raises(ValueError):
tool._process_result({"answer": "answer"})
@pytest.mark.unit
def test_tool_processes_answer_result_and_document_result():
tool = Tool(name="name", pipeline_or_node=MockPromptNode(), description="description")
assert tool._process_result(Answer(answer="answer")) == "answer"
assert tool._process_result(Document(content="content")) == "content"
2023-05-17 15:19:09 +02:00
def test_invalid_agent_template():
pn = PromptNode()
with pytest.raises(ValueError, match="some_non_existing_template not supported"):
Agent(prompt_node=pn, prompt_template="some_non_existing_template")
# if prompt_template is None, then we'll use zero-shot-react
a = Agent(prompt_node=pn, prompt_template=None)
assert isinstance(a.prompt_template, PromptTemplate)
assert a.prompt_template.name == "zero-shot-react"
@pytest.mark.unit
@patch.object(PromptNode, "prompt")
@patch("haystack.nodes.prompt.prompt_node.PromptModel")
def test_default_template_order(mock_model, mock_prompt):
pn = PromptNode("abc")
a = Agent(prompt_node=pn)
assert a.prompt_template.name == "zero-shot-react"
pn.default_prompt_template = "language-detection"
a = Agent(prompt_node=pn)
assert a.prompt_template.name == "language-detection"
a = Agent(prompt_node=pn, prompt_template="translation")
assert a.prompt_template.name == "translation"