87 lines
2.5 KiB
Python
Raw Normal View History

import json
import logging
2020-07-07 12:28:41 +02:00
import time
from pathlib import Path
from typing import Dict, List, Optional, Union, Any
from fastapi import APIRouter
from pydantic import BaseModel
from haystack import Pipeline
from rest_api.config import PIPELINE_YAML_PATH, LOG_LEVEL, QUERY_PIPELINE_NAME, CONCURRENT_REQUEST_PER_WORKER
from rest_api.controller.utils import RequestLimiter
logging.getLogger("haystack").setLevel(LOG_LEVEL)
logger = logging.getLogger("haystack")
router = APIRouter()
class Request(BaseModel):
query: str
params: Optional[dict] = None
class Answer(BaseModel):
answer: Optional[str]
question: Optional[str]
score: Optional[float] = None
probability: Optional[float] = None
context: Optional[str]
offset_start: Optional[int]
offset_end: Optional[int]
offset_start_in_doc: Optional[int]
offset_end_in_doc: Optional[int]
document_id: Optional[str] = None
meta: Optional[Dict[str, Any]]
class Response(BaseModel):
query: str
answers: List[Answer]
PIPELINE = Pipeline.load_from_yaml(Path(PIPELINE_YAML_PATH), pipeline_name=QUERY_PIPELINE_NAME)
logger.info(f"Loaded pipeline nodes: {PIPELINE.graph.nodes.keys()}")
concurrency_limiter = RequestLimiter(CONCURRENT_REQUEST_PER_WORKER)
@router.get("/initialized")
def initialized():
"""
This endpoint can be used during startup to understand if the
server is ready to take any requests, or is still loading.
The recommended approach is to call this endpoint with a short timeout,
like 500ms, and in case of no reply, consider the server busy.
"""
return True
@router.post("/query", response_model=Response)
def query(request: Request):
with concurrency_limiter.run():
result = _process_request(PIPELINE, request)
return result
def _process_request(pipeline, request) -> Response:
start_time = time.time()
params = request.params or {}
params["filters"] = params.get("filters") or {}
filters = {}
if "filters" in params: # put filter values into a list and remove filters with null value
for key, values in params["filters"].items():
if values is None:
continue
if not isinstance(values, list):
values = [values]
filters[key] = values
params["filters"] = filters
result = pipeline.run(query=request.query, params=params)
end_time = time.time()
logger.info({"request": request.dict(), "response": result, "time": f"{(end_time - start_time):.2f}"})
return result