319 lines
13 KiB
Python
Raw Normal View History

import os
from unittest.mock import patch, Mock
import openai
import pytest
2023-11-24 14:48:43 +01:00
from haystack.components.generators.chat import GPTChatGenerator
from haystack.components.generators.utils import default_streaming_callback
from haystack.dataclasses import ChatMessage, StreamingChunk
@pytest.fixture
def mock_chat_completion():
"""
Mock the OpenAI API completion response and reuse it for tests
"""
with patch("openai.ChatCompletion.create", autospec=True) as mock_chat_completion_create:
# mimic the response from the OpenAI API
mock_choice = Mock()
mock_choice.index = 0
mock_choice.finish_reason = "stop"
mock_message = Mock()
mock_message.content = "I'm fine, thanks. How are you?"
mock_message.role = "user"
mock_choice.message = mock_message
mock_response = Mock()
mock_response.model = "gpt-3.5-turbo"
mock_response.usage = Mock()
mock_response.usage.items.return_value = [
("prompt_tokens", 57),
("completion_tokens", 40),
("total_tokens", 97),
]
mock_response.choices = [mock_choice]
mock_chat_completion_create.return_value = mock_response
yield mock_chat_completion_create
def streaming_chunk(content: str):
"""
Mock chunks of streaming responses from the OpenAI API
"""
# mimic the chunk response from the OpenAI API
mock_choice = Mock()
mock_choice.index = 0
mock_choice.delta.content = content
mock_choice.finish_reason = "stop"
mock_response = Mock()
mock_response.choices = [mock_choice]
mock_response.model = "gpt-3.5-turbo"
mock_response.usage = Mock()
mock_response.usage.items.return_value = [("prompt_tokens", 57), ("completion_tokens", 40), ("total_tokens", 97)]
return mock_response
@pytest.fixture
def chat_messages():
return [
ChatMessage.from_system("You are a helpful assistant"),
ChatMessage.from_user("What's the capital of France"),
]
class TestGPTChatGenerator:
def test_init_default(self):
component = GPTChatGenerator(api_key="test-api-key")
assert openai.api_key == "test-api-key"
assert component.model_name == "gpt-3.5-turbo"
assert component.streaming_callback is None
assert component.api_base_url == "https://api.openai.com/v1"
assert openai.api_base == "https://api.openai.com/v1"
assert not component.generation_kwargs
def test_init_fail_wo_api_key(self, monkeypatch):
openai.api_key = None
monkeypatch.delenv("OPENAI_API_KEY", raising=False)
with pytest.raises(ValueError, match="GPTChatGenerator expects an OpenAI API key"):
GPTChatGenerator()
def test_init_with_parameters(self):
component = GPTChatGenerator(
api_key="test-api-key",
model_name="gpt-4",
streaming_callback=default_streaming_callback,
api_base_url="test-base-url",
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
)
assert openai.api_key == "test-api-key"
assert component.model_name == "gpt-4"
assert component.streaming_callback is default_streaming_callback
assert component.api_base_url == "test-base-url"
assert openai.api_base == "test-base-url"
assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"}
def test_to_dict_default(self):
component = GPTChatGenerator(api_key="test-api-key")
data = component.to_dict()
assert data == {
2023-11-24 14:48:43 +01:00
"type": "haystack.components.generators.chat.openai.GPTChatGenerator",
"init_parameters": {
"model_name": "gpt-3.5-turbo",
"streaming_callback": None,
"api_base_url": "https://api.openai.com/v1",
"generation_kwargs": {},
},
}
def test_to_dict_with_parameters(self):
component = GPTChatGenerator(
api_key="test-api-key",
model_name="gpt-4",
streaming_callback=default_streaming_callback,
api_base_url="test-base-url",
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
)
data = component.to_dict()
assert data == {
2023-11-24 14:48:43 +01:00
"type": "haystack.components.generators.chat.openai.GPTChatGenerator",
"init_parameters": {
"model_name": "gpt-4",
"api_base_url": "test-base-url",
2023-11-24 14:48:43 +01:00
"streaming_callback": "haystack.components.generators.utils.default_streaming_callback",
"generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
},
}
def test_to_dict_with_lambda_streaming_callback(self):
component = GPTChatGenerator(
api_key="test-api-key",
model_name="gpt-4",
streaming_callback=lambda x: x,
api_base_url="test-base-url",
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
)
data = component.to_dict()
assert data == {
2023-11-24 14:48:43 +01:00
"type": "haystack.components.generators.chat.openai.GPTChatGenerator",
"init_parameters": {
"model_name": "gpt-4",
"api_base_url": "test-base-url",
"streaming_callback": "chat.test_openai.<lambda>",
"generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
},
}
def test_from_dict(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "fake-api-key")
data = {
2023-11-24 14:48:43 +01:00
"type": "haystack.components.generators.chat.openai.GPTChatGenerator",
"init_parameters": {
"model_name": "gpt-4",
"api_base_url": "test-base-url",
2023-11-24 14:48:43 +01:00
"streaming_callback": "haystack.components.generators.utils.default_streaming_callback",
"generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
},
}
component = GPTChatGenerator.from_dict(data)
assert component.model_name == "gpt-4"
assert component.streaming_callback is default_streaming_callback
assert component.api_base_url == "test-base-url"
assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"}
def test_from_dict_fail_wo_env_var(self, monkeypatch):
openai.api_key = None
monkeypatch.delenv("OPENAI_API_KEY", raising=False)
data = {
2023-11-24 14:48:43 +01:00
"type": "haystack.components.generators.chat.openai.GPTChatGenerator",
"init_parameters": {
"model_name": "gpt-4",
"api_base_url": "test-base-url",
2023-11-24 14:48:43 +01:00
"streaming_callback": "haystack.components.generators.utils.default_streaming_callback",
"generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
},
}
with pytest.raises(ValueError, match="GPTChatGenerator expects an OpenAI API key"):
GPTChatGenerator.from_dict(data)
def test_run(self, chat_messages, mock_chat_completion):
component = GPTChatGenerator(api_key="test-api-key")
response = component.run(chat_messages)
# check that the component returns the correct ChatMessage response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert [isinstance(reply, ChatMessage) for reply in response["replies"]]
def test_run_with_params(self, chat_messages, mock_chat_completion):
component = GPTChatGenerator(api_key="test-api-key", generation_kwargs={"max_tokens": 10, "temperature": 0.5})
response = component.run(chat_messages)
# check that the component calls the OpenAI API with the correct parameters
_, kwargs = mock_chat_completion.call_args
assert kwargs["max_tokens"] == 10
assert kwargs["temperature"] == 0.5
# check that the component returns the correct response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert [isinstance(reply, ChatMessage) for reply in response["replies"]]
def test_run_streaming(self, chat_messages, mock_chat_completion):
streaming_call_count = 0
# Define the streaming callback function and assert that it is called with StreamingChunk objects
def streaming_callback_fn(chunk: StreamingChunk):
nonlocal streaming_call_count
streaming_call_count += 1
assert isinstance(chunk, StreamingChunk)
generator = GPTChatGenerator(api_key="test-api-key", streaming_callback=streaming_callback_fn)
# Create a fake streamed response
# self needed here, don't remove
def mock_iter(self):
yield streaming_chunk("Hello")
yield streaming_chunk("How are you?")
mock_response = Mock(**{"__iter__": mock_iter})
mock_chat_completion.return_value = mock_response
response = generator.run(chat_messages)
# Assert that the streaming callback was called twice
assert streaming_call_count == 2
# Assert that the response contains the generated replies
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) > 0
assert [isinstance(reply, ChatMessage) for reply in response["replies"]]
def test_check_abnormal_completions(self, caplog):
component = GPTChatGenerator(api_key="test-api-key")
messages = [
ChatMessage.from_assistant(
2023-12-21 17:09:58 +05:30
"", meta={"finish_reason": "content_filter" if i % 2 == 0 else "length", "index": i}
)
for i, _ in enumerate(range(4))
]
for m in messages:
component._check_finish_reason(m)
# check truncation warning
message_template = (
"The completion for index {index} has been truncated before reaching a natural stopping point. "
"Increase the max_tokens parameter to allow for longer completions."
)
for index in [1, 3]:
assert caplog.records[index].message == message_template.format(index=index)
# check content filter warning
message_template = "The completion for index {index} has been truncated due to the content filter."
for index in [0, 2]:
assert caplog.records[index].message == message_template.format(index=index)
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
@pytest.mark.integration
def test_live_run(self):
chat_messages = [ChatMessage.from_user("What's the capital of France")]
component = GPTChatGenerator(api_key=os.environ.get("OPENAI_API_KEY"), generation_kwargs={"n": 1})
results = component.run(chat_messages)
assert len(results["replies"]) == 1
message: ChatMessage = results["replies"][0]
assert "Paris" in message.content
assert "gpt-3.5" in message.metadata["model"]
assert message.metadata["finish_reason"] == "stop"
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
@pytest.mark.integration
def test_live_run_wrong_model(self, chat_messages):
component = GPTChatGenerator(model_name="something-obviously-wrong", api_key=os.environ.get("OPENAI_API_KEY"))
with pytest.raises(openai.InvalidRequestError, match="The model `something-obviously-wrong` does not exist"):
component.run(chat_messages)
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
@pytest.mark.integration
def test_live_run_streaming(self):
class Callback:
def __init__(self):
self.responses = ""
self.counter = 0
def __call__(self, chunk: StreamingChunk) -> None:
self.counter += 1
self.responses += chunk.content if chunk.content else ""
callback = Callback()
component = GPTChatGenerator(os.environ.get("OPENAI_API_KEY"), streaming_callback=callback)
results = component.run([ChatMessage.from_user("What's the capital of France?")])
assert len(results["replies"]) == 1
message: ChatMessage = results["replies"][0]
assert "Paris" in message.content
assert "gpt-3.5" in message.metadata["model"]
assert message.metadata["finish_reason"] == "stop"
assert callback.counter > 1
assert "Paris" in callback.responses