mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-19 15:01:40 +00:00
54 lines
2.1 KiB
Python
54 lines
2.1 KiB
Python
![]() |
from haystack.preview import Pipeline, Document
|
||
|
from haystack.preview.document_stores import MemoryDocumentStore
|
||
|
from haystack.preview.components.retrievers import MemoryBM25Retriever
|
||
|
from haystack.preview.components.readers import ExtractiveReader
|
||
|
|
||
|
|
||
|
def test_extractive_qa_pipeline():
|
||
|
document_store = MemoryDocumentStore()
|
||
|
|
||
|
documents = [
|
||
|
Document(text="My name is Jean and I live in Paris."),
|
||
|
Document(text="My name is Mark and I live in Berlin."),
|
||
|
Document(text="My name is Giorgio and I live in Rome."),
|
||
|
]
|
||
|
|
||
|
document_store.write_documents(documents)
|
||
|
|
||
|
qa_pipeline = Pipeline()
|
||
|
qa_pipeline.add_component(instance=MemoryBM25Retriever(document_store=document_store), name="retriever")
|
||
|
qa_pipeline.add_component(instance=ExtractiveReader(model_name_or_path="deepset/tinyroberta-squad2"), name="reader")
|
||
|
qa_pipeline.connect("retriever", "reader")
|
||
|
|
||
|
questions = ["Who lives in Paris?", "Who lives in Berlin?", "Who lives in Rome?"]
|
||
|
answers_spywords = ["Jean", "Mark", "Giorgio"]
|
||
|
|
||
|
for question, spyword, doc in zip(questions, answers_spywords, documents):
|
||
|
result = qa_pipeline.run({"retriever": {"query": question}, "reader": {"query": question}})
|
||
|
|
||
|
extracted_answers = result["reader"]["answers"]
|
||
|
|
||
|
# we expect at least one real answer and no_answer
|
||
|
assert len(extracted_answers) > 1
|
||
|
|
||
|
# the best answer should contain the spyword
|
||
|
assert spyword in extracted_answers[0].data
|
||
|
|
||
|
# no_answer
|
||
|
assert extracted_answers[-1].data is None
|
||
|
|
||
|
# since these questions are easily answerable, the best answer should have higher probability than no_answer
|
||
|
assert extracted_answers[0].probability >= extracted_answers[-1].probability
|
||
|
|
||
|
for answer in extracted_answers:
|
||
|
assert answer.query == question
|
||
|
|
||
|
assert hasattr(answer, "probability")
|
||
|
assert hasattr(answer, "start")
|
||
|
assert hasattr(answer, "end")
|
||
|
|
||
|
assert hasattr(answer, "document")
|
||
|
# the answer is extracted from the correct document
|
||
|
if answer.document is not None:
|
||
|
assert answer.document == doc
|