mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-19 06:52:56 +00:00
137 lines
5.7 KiB
Python
137 lines
5.7 KiB
Python
![]() |
import os
|
||
|
import pytest
|
||
|
|
||
|
from haystack.preview import Pipeline, Document
|
||
|
from haystack.preview.document_stores import MemoryDocumentStore
|
||
|
from haystack.preview.components.writers import DocumentWriter
|
||
|
from haystack.preview.components.retrievers import MemoryBM25Retriever, MemoryEmbeddingRetriever
|
||
|
from haystack.preview.components.embedders import SentenceTransformersTextEmbedder, SentenceTransformersDocumentEmbedder
|
||
|
from haystack.preview.components.generators.openai.gpt import GPTGenerator
|
||
|
from haystack.preview.components.builders.answer_builder import AnswerBuilder
|
||
|
from haystack.preview.components.builders.prompt_builder import PromptBuilder
|
||
|
|
||
|
|
||
|
@pytest.mark.skipif(
|
||
|
not os.environ.get("OPENAI_API_KEY", None),
|
||
|
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
|
||
|
)
|
||
|
def test_bm25_rag_pipeline():
|
||
|
document_store = MemoryDocumentStore()
|
||
|
|
||
|
documents = [
|
||
|
Document(text="My name is Jean and I live in Paris."),
|
||
|
Document(text="My name is Mark and I live in Berlin."),
|
||
|
Document(text="My name is Giorgio and I live in Rome."),
|
||
|
]
|
||
|
|
||
|
prompt_template = """
|
||
|
Given these documents, answer the question.\nDocuments:
|
||
|
{% for doc in documents %}
|
||
|
{{ doc.text }}
|
||
|
{% endfor %}
|
||
|
|
||
|
\nQuestion: {{question}}
|
||
|
\nAnswer:
|
||
|
"""
|
||
|
|
||
|
document_store.write_documents(documents)
|
||
|
|
||
|
rag_pipeline = Pipeline()
|
||
|
rag_pipeline.add_component(instance=MemoryBM25Retriever(document_store=document_store), name="retriever")
|
||
|
rag_pipeline.add_component(instance=PromptBuilder(template=prompt_template), name="prompt_builder")
|
||
|
rag_pipeline.add_component(instance=GPTGenerator(api_key=os.environ.get("OPENAI_API_KEY")), name="llm")
|
||
|
rag_pipeline.add_component(instance=AnswerBuilder(), name="answer_builder")
|
||
|
rag_pipeline.connect("retriever", "prompt_builder.documents")
|
||
|
rag_pipeline.connect("prompt_builder", "llm")
|
||
|
rag_pipeline.connect("llm.replies", "answer_builder.replies")
|
||
|
rag_pipeline.connect("llm.metadata", "answer_builder.metadata")
|
||
|
rag_pipeline.connect("retriever", "answer_builder.documents")
|
||
|
|
||
|
questions = ["Who lives in Paris?", "Who lives in Berlin?", "Who lives in Rome?"]
|
||
|
answers_spywords = ["Jean", "Mark", "Giorgio"]
|
||
|
|
||
|
for question, spyword in zip(questions, answers_spywords):
|
||
|
result = rag_pipeline.run(
|
||
|
{
|
||
|
"retriever": {"query": question},
|
||
|
"prompt_builder": {"question": question},
|
||
|
"answer_builder": {"query": question},
|
||
|
}
|
||
|
)
|
||
|
|
||
|
assert len(result["answer_builder"]["answers"]) == 1
|
||
|
generated_answer = result["answer_builder"]["answers"][0]
|
||
|
assert spyword in generated_answer.data
|
||
|
assert generated_answer.query == question
|
||
|
assert hasattr(generated_answer, "documents")
|
||
|
assert hasattr(generated_answer, "metadata")
|
||
|
|
||
|
|
||
|
@pytest.mark.skipif(
|
||
|
not os.environ.get("OPENAI_API_KEY", None),
|
||
|
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
|
||
|
)
|
||
|
def test_embedding_retrieval_rag_pipeline():
|
||
|
document_store = MemoryDocumentStore()
|
||
|
|
||
|
documents = [
|
||
|
Document(text="My name is Jean and I live in Paris."),
|
||
|
Document(text="My name is Mark and I live in Berlin."),
|
||
|
Document(text="My name is Giorgio and I live in Rome."),
|
||
|
]
|
||
|
|
||
|
prompt_template = """
|
||
|
Given these documents, answer the question.\nDocuments:
|
||
|
{% for doc in documents %}
|
||
|
{{ doc.text }}
|
||
|
{% endfor %}
|
||
|
|
||
|
\nQuestion: {{question}}
|
||
|
\nAnswer:
|
||
|
"""
|
||
|
|
||
|
indexing_pipeline = Pipeline()
|
||
|
indexing_pipeline.add_component(
|
||
|
instance=SentenceTransformersDocumentEmbedder(model_name_or_path="sentence-transformers/all-mpnet-base-v2"),
|
||
|
name="document_embedder",
|
||
|
)
|
||
|
indexing_pipeline.add_component(instance=DocumentWriter(document_store=document_store), name="document_writer")
|
||
|
indexing_pipeline.connect("document_embedder", "document_writer")
|
||
|
indexing_pipeline.run({"document_embedder": {"documents": documents}})
|
||
|
|
||
|
rag_pipeline = Pipeline()
|
||
|
rag_pipeline.add_component(
|
||
|
instance=SentenceTransformersTextEmbedder(model_name_or_path="sentence-transformers/all-mpnet-base-v2"),
|
||
|
name="text_embedder",
|
||
|
)
|
||
|
rag_pipeline.add_component(instance=MemoryEmbeddingRetriever(document_store=document_store), name="retriever")
|
||
|
rag_pipeline.add_component(instance=PromptBuilder(template=prompt_template), name="prompt_builder")
|
||
|
rag_pipeline.add_component(instance=GPTGenerator(api_key=os.environ.get("OPENAI_API_KEY")), name="llm")
|
||
|
rag_pipeline.add_component(instance=AnswerBuilder(), name="answer_builder")
|
||
|
rag_pipeline.connect("text_embedder", "retriever")
|
||
|
rag_pipeline.connect("retriever", "prompt_builder.documents")
|
||
|
rag_pipeline.connect("prompt_builder", "llm")
|
||
|
rag_pipeline.connect("llm.replies", "answer_builder.replies")
|
||
|
rag_pipeline.connect("llm.metadata", "answer_builder.metadata")
|
||
|
rag_pipeline.connect("retriever", "answer_builder.documents")
|
||
|
|
||
|
questions = ["Who lives in Paris?", "Who lives in Berlin?", "Who lives in Rome?"]
|
||
|
answers_spywords = ["Jean", "Mark", "Giorgio"]
|
||
|
|
||
|
for question, spyword in zip(questions, answers_spywords):
|
||
|
result = rag_pipeline.run(
|
||
|
{
|
||
|
"text_embedder": {"text": question},
|
||
|
"prompt_builder": {"question": question},
|
||
|
"answer_builder": {"query": question},
|
||
|
}
|
||
|
)
|
||
|
|
||
|
assert len(result["answer_builder"]["answers"]) == 1
|
||
|
generated_answer = result["answer_builder"]["answers"][0]
|
||
|
print(generated_answer)
|
||
|
assert spyword in generated_answer.data
|
||
|
assert generated_answer.query == question
|
||
|
assert hasattr(generated_answer, "documents")
|
||
|
assert hasattr(generated_answer, "metadata")
|