haystack/tutorials/Tutorial12_LFQA.py

102 lines
4.3 KiB
Python
Raw Normal View History

Refactoring of the `haystack` package (#1624) * Files moved, imports all broken * Fix most imports and docstrings into * Fix the paths to the modules in the API docs * Add latest docstring and tutorial changes * Add a few pipelines that were lost in the inports * Fix a bunch of mypy warnings * Add latest docstring and tutorial changes * Create a file_classifier module * Add docs for file_classifier * Fixed most circular imports, now the REST API can start * Add latest docstring and tutorial changes * Tackling more mypy issues * Reintroduce from FARM and fix last mypy issues hopefully * Re-enable old-style imports * Fix some more import from the top-level package in an attempt to sort out circular imports * Fix some imports in tests to new-style to prevent failed class equalities from breaking tests * Change document_store into document_stores * Update imports in tutorials * Add latest docstring and tutorial changes * Probably fixes summarizer tests * Improve the old-style import allowing module imports (should work) * Try to fix the docs * Remove dedicated KnowledgeGraph page from autodocs * Remove dedicated GraphRetriever page from autodocs * Fix generate_docstrings.sh with an updated list of yaml files to look for * Fix some more modules in the docs * Fix the document stores docs too * Fix a small issue on Tutorial14 * Add latest docstring and tutorial changes * Add deprecation warning to old-style imports * Remove stray folder and import Dict into dense.py * Change import path for MLFlowLogger * Add old loggers path to the import path aliases * Fix debug output of convert_ipynb.py * Fix circular import on BaseRetriever * Missed one merge block * re-run tutorial 5 * Fix imports in tutorial 5 * Re-enable squad_to_dpr CLI from the root package and move get_batches_from_generator into document_stores.base * Add latest docstring and tutorial changes * Fix typo in utils __init__ * Fix a few more imports * Fix benchmarks too * New-style imports in test_knowledge_graph * Rollback setup.py * Rollback squad_to_dpr too Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-10-25 15:50:23 +02:00
from haystack.utils import convert_files_to_dicts, fetch_archive_from_http, clean_wiki_text
from haystack.nodes import Seq2SeqGenerator
def tutorial12_lfqa():
"""
Document Store:
FAISS is a library for efficient similarity search on a cluster of dense vectors.
The `FAISSDocumentStore` uses a SQL(SQLite in-memory be default) database under-the-hood
to store the document text and other meta data. The vector embeddings of the text are
indexed on a FAISS Index that later is queried for searching answers.
The default flavour of FAISSDocumentStore is "Flat" but can also be set to "HNSW" for
faster search at the expense of some accuracy. Just set the faiss_index_factor_str argument in the constructor.
For more info on which suits your use case: https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index
"""
Refactoring of the `haystack` package (#1624) * Files moved, imports all broken * Fix most imports and docstrings into * Fix the paths to the modules in the API docs * Add latest docstring and tutorial changes * Add a few pipelines that were lost in the inports * Fix a bunch of mypy warnings * Add latest docstring and tutorial changes * Create a file_classifier module * Add docs for file_classifier * Fixed most circular imports, now the REST API can start * Add latest docstring and tutorial changes * Tackling more mypy issues * Reintroduce from FARM and fix last mypy issues hopefully * Re-enable old-style imports * Fix some more import from the top-level package in an attempt to sort out circular imports * Fix some imports in tests to new-style to prevent failed class equalities from breaking tests * Change document_store into document_stores * Update imports in tutorials * Add latest docstring and tutorial changes * Probably fixes summarizer tests * Improve the old-style import allowing module imports (should work) * Try to fix the docs * Remove dedicated KnowledgeGraph page from autodocs * Remove dedicated GraphRetriever page from autodocs * Fix generate_docstrings.sh with an updated list of yaml files to look for * Fix some more modules in the docs * Fix the document stores docs too * Fix a small issue on Tutorial14 * Add latest docstring and tutorial changes * Add deprecation warning to old-style imports * Remove stray folder and import Dict into dense.py * Change import path for MLFlowLogger * Add old loggers path to the import path aliases * Fix debug output of convert_ipynb.py * Fix circular import on BaseRetriever * Missed one merge block * re-run tutorial 5 * Fix imports in tutorial 5 * Re-enable squad_to_dpr CLI from the root package and move get_batches_from_generator into document_stores.base * Add latest docstring and tutorial changes * Fix typo in utils __init__ * Fix a few more imports * Fix benchmarks too * New-style imports in test_knowledge_graph * Rollback setup.py * Rollback squad_to_dpr too Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-10-25 15:50:23 +02:00
from haystack.document_stores.faiss import FAISSDocumentStore
document_store = FAISSDocumentStore(vector_dim=128, faiss_index_factory_str="Flat")
"""
Cleaning & indexing documents:
Similarly to the previous tutorials, we download, convert and index some Game of Thrones articles to our DocumentStore
"""
# Let's first get some files that we want to use
doc_dir = "data/article_txt_got"
s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/wiki_gameofthrones_txt.zip"
fetch_archive_from_http(url=s3_url, output_dir=doc_dir)
# Convert files to dicts
dicts = convert_files_to_dicts(dir_path=doc_dir, clean_func=clean_wiki_text, split_paragraphs=True)
# Now, let's write the dicts containing documents to our DB.
document_store.write_documents(dicts)
"""
Initalize Retriever and Reader/Generator:
We use a `RetribertRetriever` and we invoke `update_embeddings` to index the embeddings of documents in the `FAISSDocumentStore`
"""
Refactoring of the `haystack` package (#1624) * Files moved, imports all broken * Fix most imports and docstrings into * Fix the paths to the modules in the API docs * Add latest docstring and tutorial changes * Add a few pipelines that were lost in the inports * Fix a bunch of mypy warnings * Add latest docstring and tutorial changes * Create a file_classifier module * Add docs for file_classifier * Fixed most circular imports, now the REST API can start * Add latest docstring and tutorial changes * Tackling more mypy issues * Reintroduce from FARM and fix last mypy issues hopefully * Re-enable old-style imports * Fix some more import from the top-level package in an attempt to sort out circular imports * Fix some imports in tests to new-style to prevent failed class equalities from breaking tests * Change document_store into document_stores * Update imports in tutorials * Add latest docstring and tutorial changes * Probably fixes summarizer tests * Improve the old-style import allowing module imports (should work) * Try to fix the docs * Remove dedicated KnowledgeGraph page from autodocs * Remove dedicated GraphRetriever page from autodocs * Fix generate_docstrings.sh with an updated list of yaml files to look for * Fix some more modules in the docs * Fix the document stores docs too * Fix a small issue on Tutorial14 * Add latest docstring and tutorial changes * Add deprecation warning to old-style imports * Remove stray folder and import Dict into dense.py * Change import path for MLFlowLogger * Add old loggers path to the import path aliases * Fix debug output of convert_ipynb.py * Fix circular import on BaseRetriever * Missed one merge block * re-run tutorial 5 * Fix imports in tutorial 5 * Re-enable squad_to_dpr CLI from the root package and move get_batches_from_generator into document_stores.base * Add latest docstring and tutorial changes * Fix typo in utils __init__ * Fix a few more imports * Fix benchmarks too * New-style imports in test_knowledge_graph * Rollback setup.py * Rollback squad_to_dpr too Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-10-25 15:50:23 +02:00
from haystack.nodes import EmbeddingRetriever
retriever = EmbeddingRetriever(document_store=document_store,
embedding_model="yjernite/retribert-base-uncased",
model_format="retribert")
document_store.update_embeddings(retriever)
"""Before we blindly use the `RetribertRetriever` let's empirically test it to make sure a simple search indeed finds the relevant documents."""
from haystack.utils import print_documents
Refactoring of the `haystack` package (#1624) * Files moved, imports all broken * Fix most imports and docstrings into * Fix the paths to the modules in the API docs * Add latest docstring and tutorial changes * Add a few pipelines that were lost in the inports * Fix a bunch of mypy warnings * Add latest docstring and tutorial changes * Create a file_classifier module * Add docs for file_classifier * Fixed most circular imports, now the REST API can start * Add latest docstring and tutorial changes * Tackling more mypy issues * Reintroduce from FARM and fix last mypy issues hopefully * Re-enable old-style imports * Fix some more import from the top-level package in an attempt to sort out circular imports * Fix some imports in tests to new-style to prevent failed class equalities from breaking tests * Change document_store into document_stores * Update imports in tutorials * Add latest docstring and tutorial changes * Probably fixes summarizer tests * Improve the old-style import allowing module imports (should work) * Try to fix the docs * Remove dedicated KnowledgeGraph page from autodocs * Remove dedicated GraphRetriever page from autodocs * Fix generate_docstrings.sh with an updated list of yaml files to look for * Fix some more modules in the docs * Fix the document stores docs too * Fix a small issue on Tutorial14 * Add latest docstring and tutorial changes * Add deprecation warning to old-style imports * Remove stray folder and import Dict into dense.py * Change import path for MLFlowLogger * Add old loggers path to the import path aliases * Fix debug output of convert_ipynb.py * Fix circular import on BaseRetriever * Missed one merge block * re-run tutorial 5 * Fix imports in tutorial 5 * Re-enable squad_to_dpr CLI from the root package and move get_batches_from_generator into document_stores.base * Add latest docstring and tutorial changes * Fix typo in utils __init__ * Fix a few more imports * Fix benchmarks too * New-style imports in test_knowledge_graph * Rollback setup.py * Rollback squad_to_dpr too Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-10-25 15:50:23 +02:00
from haystack.pipelines import DocumentSearchPipeline
p_retrieval = DocumentSearchPipeline(retriever)
res = p_retrieval.run(
query="Tell me something about Arya Stark?",
params={"Retriever": {"top_k": 1}}
)
print_documents(res, max_text_len=512)
"""
Similar to previous Tutorials we now initalize our reader/generator.
Here we use a `Seq2SeqGenerator` with the *yjernite/bart_eli5* model (see: https://huggingface.co/yjernite/bart_eli5)
"""
generator = Seq2SeqGenerator(model_name_or_path="yjernite/bart_eli5")
"""
Pipeline:
With a Haystack `Pipeline` you can stick together your building blocks to a search pipeline.
Under the hood, `Pipelines` are Directed Acyclic Graphs (DAGs) that you can easily customize for your own use cases.
To speed things up, Haystack also comes with a few predefined Pipelines. One of them is the `GenerativeQAPipeline` that combines a retriever and a reader/generator to answer our questions.
You can learn more about `Pipelines` in the [docs](https://haystack.deepset.ai/docs/latest/pipelinesmd).
"""
Refactoring of the `haystack` package (#1624) * Files moved, imports all broken * Fix most imports and docstrings into * Fix the paths to the modules in the API docs * Add latest docstring and tutorial changes * Add a few pipelines that were lost in the inports * Fix a bunch of mypy warnings * Add latest docstring and tutorial changes * Create a file_classifier module * Add docs for file_classifier * Fixed most circular imports, now the REST API can start * Add latest docstring and tutorial changes * Tackling more mypy issues * Reintroduce from FARM and fix last mypy issues hopefully * Re-enable old-style imports * Fix some more import from the top-level package in an attempt to sort out circular imports * Fix some imports in tests to new-style to prevent failed class equalities from breaking tests * Change document_store into document_stores * Update imports in tutorials * Add latest docstring and tutorial changes * Probably fixes summarizer tests * Improve the old-style import allowing module imports (should work) * Try to fix the docs * Remove dedicated KnowledgeGraph page from autodocs * Remove dedicated GraphRetriever page from autodocs * Fix generate_docstrings.sh with an updated list of yaml files to look for * Fix some more modules in the docs * Fix the document stores docs too * Fix a small issue on Tutorial14 * Add latest docstring and tutorial changes * Add deprecation warning to old-style imports * Remove stray folder and import Dict into dense.py * Change import path for MLFlowLogger * Add old loggers path to the import path aliases * Fix debug output of convert_ipynb.py * Fix circular import on BaseRetriever * Missed one merge block * re-run tutorial 5 * Fix imports in tutorial 5 * Re-enable squad_to_dpr CLI from the root package and move get_batches_from_generator into document_stores.base * Add latest docstring and tutorial changes * Fix typo in utils __init__ * Fix a few more imports * Fix benchmarks too * New-style imports in test_knowledge_graph * Rollback setup.py * Rollback squad_to_dpr too Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-10-25 15:50:23 +02:00
from haystack.pipelines import GenerativeQAPipeline
pipe = GenerativeQAPipeline(generator, retriever)
"""Voilà! Ask a question!"""
query_1 = "Why did Arya Stark's character get portrayed in a television adaptation?"
result_1 = pipe.run(query=query_1, params={"Retriever": {"top_k": 1}})
print(f"Query: {query_1}")
print(f"Answer: {result_1['answers'][0]}")
print()
query_2 = "What kind of character does Arya Stark play?"
result_2 = pipe.run(query=query_2, params={"Retriever": {"top_k": 1}})
print(f"Query: {query_2}")
print(f"Answer: {result_2['answers'][0]}")
print()
if __name__ == "__main__":
tutorial12_lfqa()
2021-06-14 18:37:00 +02:00
# This Haystack script was made with love by deepset in Berlin, Germany
# Haystack: https://github.com/deepset-ai/haystack
# deepset: https://deepset.ai/