77 lines
3.3 KiB
Python
Raw Normal View History

from pathlib import Path
from typing import Dict
import argparse
import json
from haystack import Pipeline
from haystack.pipelines.config import read_pipeline_config_from_yaml
from utils import prepare_environment, contains_reader, contains_retriever
Create time and performance benchmarks for all readers and retrievers (#339) * add time and perf benchmark for es * Add retriever benchmarking * Add Reader benchmarking * add nq to squad conversion * add conversion stats * clean benchmarks * Add link to dataset * Update imports * add first support for neg psgs * Refactor test * set max_seq_len * cleanup benchmark * begin retriever speed benchmarking * Add support for retriever query index benchmarking * improve reader eval, retriever speed benchmarking * improve retriever speed benchmarking * Add retriever accuracy benchmark * Add neg doc shuffling * Add top_n * 3x speedup of SQL. add postgres docker run. make shuffle neg a param. add more logging * Add models to sweep * add option for faiss index type * remove unneeded line * change faiss to faiss_flat * begin automatic benchmark script * remove existing postgres docker for benchmarking * Add data processing scripts * Remove shuffle in script bc data already shuffled * switch hnsw setup from 256 to 128 * change es similarity to dot product by default * Error includes stack trace * Change ES default timeout * remove delete_docs() from timing for indexing * Add support for website export * update website on push to benchmarks * add complete benchmarks results * new json format * removed NaN as is not a valid json token * fix benchmarking for faiss hnsw queries. do sql calls in update_embeddings() as batches * update benchmarks for hnsw 128,20,80 * don't delete full index in delete_all_documents() * update texts for charts * update recall column for retriever * change scale and add units to desc * add units to legend * add axis titles. update desc * add html tags Co-authored-by: deepset <deepset@Crenolape.localdomain> Co-authored-by: Malte Pietsch <malte.pietsch@deepset.ai> Co-authored-by: PiffPaffM <markuspaff.mp@gmail.com>
2020-10-12 13:34:42 +02:00
from reader import benchmark_reader
from retriever import benchmark_retriever
from retriever_reader import benchmark_retriever_reader
def run_benchmark(pipeline_yaml: Path) -> Dict:
"""
Run benchmarking on a given pipeline. Pipeline can be a retriever, reader, or retriever-reader pipeline.
In case of retriever or retriever-reader pipelines, indexing is also benchmarked, so the config file must
contain an indexing pipeline as well.
:param pipeline_yaml: Path to pipeline YAML config. The config file should contain a benchmark_config section where
the following parameters are specified:
- documents_directory: Directory containing files to index.
- labels_file: Path to evaluation set.
- data_url (optional): URL to download the data from. Downloaded data will be stored in
the directory `data/`.
"""
pipeline_config = read_pipeline_config_from_yaml(pipeline_yaml)
benchmark_config = pipeline_config.pop("benchmark_config", {})
# Prepare environment
prepare_environment(pipeline_config, benchmark_config)
labels_file = Path(benchmark_config["labels_file"])
querying_pipeline = Pipeline.load_from_config(pipeline_config, pipeline_name="querying")
pipeline_contains_reader = contains_reader(querying_pipeline)
pipeline_contains_retriever = contains_retriever(querying_pipeline)
# Retriever-Reader pipeline
if pipeline_contains_retriever and pipeline_contains_reader:
documents_dir = Path(benchmark_config["documents_directory"])
indexing_pipeline = Pipeline.load_from_config(pipeline_config, pipeline_name="indexing")
results = benchmark_retriever_reader(indexing_pipeline, querying_pipeline, documents_dir, labels_file)
# Retriever pipeline
elif pipeline_contains_retriever:
documents_dir = Path(benchmark_config["documents_directory"])
indexing_pipeline = Pipeline.load_from_config(pipeline_config, pipeline_name="indexing")
results = benchmark_retriever(indexing_pipeline, querying_pipeline, documents_dir, labels_file)
# Reader pipeline
elif pipeline_contains_reader:
results = benchmark_reader(querying_pipeline, labels_file)
# Unsupported pipeline type
else:
raise ValueError("Pipeline must be a retriever, reader, or retriever-reader pipeline.")
pipeline_config["benchmark_config"] = benchmark_config
results["config"] = pipeline_config
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("config", type=str, help="Path to pipeline YAML config.")
parser.add_argument("--output", type=str, help="Path to output file.")
args = parser.parse_args()
Create time and performance benchmarks for all readers and retrievers (#339) * add time and perf benchmark for es * Add retriever benchmarking * Add Reader benchmarking * add nq to squad conversion * add conversion stats * clean benchmarks * Add link to dataset * Update imports * add first support for neg psgs * Refactor test * set max_seq_len * cleanup benchmark * begin retriever speed benchmarking * Add support for retriever query index benchmarking * improve reader eval, retriever speed benchmarking * improve retriever speed benchmarking * Add retriever accuracy benchmark * Add neg doc shuffling * Add top_n * 3x speedup of SQL. add postgres docker run. make shuffle neg a param. add more logging * Add models to sweep * add option for faiss index type * remove unneeded line * change faiss to faiss_flat * begin automatic benchmark script * remove existing postgres docker for benchmarking * Add data processing scripts * Remove shuffle in script bc data already shuffled * switch hnsw setup from 256 to 128 * change es similarity to dot product by default * Error includes stack trace * Change ES default timeout * remove delete_docs() from timing for indexing * Add support for website export * update website on push to benchmarks * add complete benchmarks results * new json format * removed NaN as is not a valid json token * fix benchmarking for faiss hnsw queries. do sql calls in update_embeddings() as batches * update benchmarks for hnsw 128,20,80 * don't delete full index in delete_all_documents() * update texts for charts * update recall column for retriever * change scale and add units to desc * add units to legend * add axis titles. update desc * add html tags Co-authored-by: deepset <deepset@Crenolape.localdomain> Co-authored-by: Malte Pietsch <malte.pietsch@deepset.ai> Co-authored-by: PiffPaffM <markuspaff.mp@gmail.com>
2020-10-12 13:34:42 +02:00
config_file = Path(args.config)
output_file = f"{config_file.stem}_results.json" if args.output is None else args.output
results = run_benchmark(config_file)
with open(output_file, "w") as f:
json.dump(results, f, indent=2)