haystack/test/test_pipeline_extractive_qa.py

184 lines
8.8 KiB
Python
Raw Normal View History

import pytest
from haystack.pipeline import (
TranslationWrapperPipeline,
ExtractiveQAPipeline
)
from haystack.schema import Answer, Document, Label, MultiLabel, Span, EvaluationResult
@pytest.mark.slow
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
def test_extractive_qa_answers(reader, retriever_with_docs, document_store_with_docs):
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
prediction = pipeline.run(
query="Who lives in Berlin?", params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 3}},
)
assert prediction is not None
assert type(prediction["answers"][0]) == Answer
assert prediction["query"] == "Who lives in Berlin?"
assert prediction["answers"][0].answer == "Carla"
assert prediction["answers"][0].score <= 1
assert prediction["answers"][0].score >= 0
assert prediction["answers"][0].meta["meta_field"] == "test1"
assert (
prediction["answers"][0].context == "My name is Carla and I live in Berlin"
)
assert len(prediction["answers"]) == 3
@pytest.mark.slow
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
def test_extractive_qa_answers_without_normalized_scores(reader_without_normalized_scores, retriever_with_docs):
pipeline = ExtractiveQAPipeline(reader=reader_without_normalized_scores, retriever=retriever_with_docs)
prediction = pipeline.run(
query="Who lives in Berlin?", params={"Reader": {"top_k": 3}}
)
assert prediction is not None
assert prediction["query"] == "Who lives in Berlin?"
assert prediction["answers"][0].answer == "Carla"
assert prediction["answers"][0].score <= 11
assert prediction["answers"][0].score >= 10
assert prediction["answers"][0].meta["meta_field"] == "test1"
assert (
prediction["answers"][0].context == "My name is Carla and I live in Berlin"
)
assert len(prediction["answers"]) == 3
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
def test_extractive_qa_offsets(reader, retriever_with_docs):
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
prediction = pipeline.run(query="Who lives in Berlin?", params={"Retriever": {"top_k": 5}})
start = prediction["answers"][0].offsets_in_context[0].start
end = prediction["answers"][0].offsets_in_context[0].end
assert start == 11
assert end == 16
assert (
prediction["answers"][0].context[start:end]
== prediction["answers"][0].answer
)
@pytest.mark.slow
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
def test_extractive_qa_answers_single_result(reader, retriever_with_docs):
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
query = "testing finder"
prediction = pipeline.run(query=query, params={"Retriever": {"top_k": 1}, "Reader": {"top_k": 1}})
assert prediction is not None
assert len(prediction["answers"]) == 1
@pytest.mark.slow
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
def test_extractive_qa_answers_with_translator(
reader, retriever_with_docs, en_to_de_translator, de_to_en_translator
):
base_pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
pipeline = TranslationWrapperPipeline(
input_translator=de_to_en_translator,
output_translator=en_to_de_translator,
pipeline=base_pipeline,
)
prediction = pipeline.run(query="Wer lebt in Berlin?", params={"Reader": {"top_k": 3}})
assert prediction is not None
assert prediction["query"] == "Wer lebt in Berlin?"
assert "Carla" in prediction["answers"][0].answer
assert prediction["answers"][0].score <= 1
assert prediction["answers"][0].score >= 0
assert prediction["answers"][0].meta["meta_field"] == "test1"
assert (
prediction["answers"][0].context == "My name is Carla and I live in Berlin"
)
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["elasticsearch"], indirect=True)
def test_extractive_qa_eval(reader, retriever_with_docs, tmp_path):
queries = ["Who lives in Berlin?"]
labels = [
MultiLabel(labels=[Label(query="Who lives in Berlin?", answer=Answer(answer="Carla", offsets_in_context=[Span(11, 16)]),
document=Document(id='a0747b83aea0b60c4b114b15476dd32d', content_type="text", content='My name is Carla and I live in Berlin'),
is_correct_answer=True, is_correct_document=True, origin="gold-label")])
]
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
eval_result = pipeline.eval(
queries=queries,
labels=labels,
params={"Retriever": {"top_k": 5}},
)
metrics = eval_result.calculate_metrics()
reader_result = eval_result["Reader"]
retriever_result = eval_result["Retriever"]
assert reader_result[reader_result['rank'] == 1]["answer"].iloc[0] in reader_result[reader_result['rank'] == 1]["gold_answers"].iloc[0]
assert retriever_result[retriever_result['rank'] == 1]["id"].iloc[0] in retriever_result[retriever_result['rank'] == 1]["gold_document_ids"].iloc[0]
assert metrics["MatchInTop1"] == 1.0
eval_result.save(tmp_path)
saved_eval_result = EvaluationResult.load(tmp_path)
metrics = saved_eval_result.calculate_metrics()
assert reader_result[reader_result['rank'] == 1]["answer"].iloc[0] in reader_result[reader_result['rank'] == 1]["gold_answers"].iloc[0]
assert retriever_result[retriever_result['rank'] == 1]["id"].iloc[0] in retriever_result[retriever_result['rank'] == 1]["gold_document_ids"].iloc[0]
assert metrics["MatchInTop1"] == 1.0
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["elasticsearch"], indirect=True)
def test_extractive_qa_eval_multiple_queries(reader, retriever_with_docs, tmp_path):
queries = ["Who lives in Berlin?", "Who lives in Munich?"]
labels = [
MultiLabel(labels=[Label(query="Who lives in Berlin?", answer=Answer(answer="Carla", offsets_in_context=[Span(11, 16)]),
document=Document(id='a0747b83aea0b60c4b114b15476dd32d', content_type="text", content='My name is Carla and I live in Berlin'),
is_correct_answer=True, is_correct_document=True, origin="gold-label")]),
MultiLabel(labels=[Label(query="Who lives in Munich?", answer=Answer(answer="Carla", offsets_in_context=[Span(11, 16)]),
document=Document(id='something_else', content_type="text", content='My name is Carla and I live in Munich'),
is_correct_answer=True, is_correct_document=True, origin="gold-label")])
]
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
eval_result = pipeline.eval(
queries=queries,
labels=labels,
params={"Retriever": {"top_k": 5}},
)
metrics = eval_result.calculate_metrics()
reader_result = eval_result["Reader"]
retriever_result = eval_result["Retriever"]
reader_berlin = reader_result[reader_result['query'] == "Who lives in Berlin?"]
reader_munich = reader_result[reader_result['query'] == "Who lives in Munich?"]
retriever_berlin = retriever_result[retriever_result['query'] == "Who lives in Berlin?"]
retriever_munich = retriever_result[retriever_result['query'] == "Who lives in Munich?"]
assert reader_berlin[reader_berlin['rank'] == 1]["answer"].iloc[0] in reader_berlin[reader_berlin['rank'] == 1]["gold_answers"].iloc[0]
assert retriever_berlin[retriever_berlin['rank'] == 1]["id"].iloc[0] in retriever_berlin[retriever_berlin['rank'] == 1]["gold_document_ids"].iloc[0]
assert reader_munich[reader_munich['rank'] == 1]["answer"].iloc[0] not in reader_munich[reader_munich['rank'] == 1]["gold_answers"].iloc[0]
assert retriever_munich[retriever_munich['rank'] == 1]["id"].iloc[0] not in retriever_munich[retriever_munich['rank'] == 1]["gold_document_ids"].iloc[0]
assert metrics["MatchInTop1"] == 0.5
eval_result.save(tmp_path)
saved_eval_result = EvaluationResult.load(tmp_path)
metrics = saved_eval_result.calculate_metrics()
assert reader_berlin[reader_berlin['rank'] == 1]["answer"].iloc[0] in reader_berlin[reader_berlin['rank'] == 1]["gold_answers"].iloc[0]
assert retriever_berlin[retriever_berlin['rank'] == 1]["id"].iloc[0] in retriever_berlin[retriever_berlin['rank'] == 1]["gold_document_ids"].iloc[0]
assert reader_munich[reader_munich['rank'] == 1]["answer"].iloc[0] not in reader_munich[reader_munich['rank'] == 1]["gold_answers"].iloc[0]
assert retriever_munich[retriever_munich['rank'] == 1]["id"].iloc[0] not in retriever_munich[retriever_munich['rank'] == 1]["gold_document_ids"].iloc[0]
assert metrics["MatchInTop1"] == 0.5