75 lines
3.0 KiB
Plaintext
Raw Normal View History

---
title: "PgvectorDocumentStore"
id: pgvectordocumentstore
slug: "/pgvectordocumentstore"
description: ""
---
# PgvectorDocumentStore
| | |
| :------------ | :------------------------------------------------------------------------------------------ |
| API reference | [Pgvector](/reference/integrations-pgvector) |
| GitHub link | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/pgvector/ |
Pgvector is an extension for PostgreSQL that enhances its capabilities with vector similarity search. It builds upon the classic features of PostgreSQL, such as ACID compliance and point-in-time recovery, and introduces the ability to perform exact and approximate nearest neighbor search using vectors.
For more information, see the [pgvector repository](https://github.com/pgvector/pgvector).
Pgvector Document Store supports embedding retrieval and metadata filtering.
## Installation
To quickly set up a PostgreSQL database with pgvector, you can use Docker:
```shell
docker run -d -p 5432:5432 -e POSTGRES_USER=postgres -e POSTGRES_PASSWORD=postgres -e POSTGRES_DB=postgres ankane/pgvector
```
For more information on installing pgvector, visit the [pgvector GitHub repository](https://github.com/pgvector/pgvector).
To use pgvector with Haystack, install the `pgvector-haystack` integration:
```shell
pip install pgvector-haystack
```
## Usage
Define the connection string to your PostgreSQL database in the `PG_CONN_STR` environment variable. For example:
```shell Shell
export PG_CONN_STR="postgresql://postgres:postgres@localhost:5432/postgres"
```
## Initialization
Initialize a `PgvectorDocumentStore` object thats connected to the PostgreSQL database and writes documents to it:
```python
from haystack_integrations.document_stores.pgvector import PgvectorDocumentStore
from haystack import Document
document_store = PgvectorDocumentStore(
embedding_dimension=768,
vector_function="cosine_similarity",
recreate_table=True,
search_strategy="hnsw",
)
document_store.write_documents([
Document(content="This is first", embedding=[0.1]*768),
Document(content="This is second", embedding=[0.3]*768)
])
print(document_store.count_documents())
```
To learn more about the initialization parameters, see our [API docs](/reference/integrations-pgvector#pgvectordocumentstore).
To properly compute embeddings for your documents, you can use a Document Embedder (for instance, the [`SentenceTransformersDocumentEmbedder`](/docs/sentencetransformersdocumentembedder)).
### Supported Retrievers
- [`PgvectorEmbeddingRetriever`](/docs/pgvectorembeddingretriever): An embedding-based Retriever that fetches documents from the Document Store based on a query embedding provided to the Retriever.
- [`PgvectorKeywordRetriever`](/docs/pgvectorembeddingretriever): A keyword-based Retriever that fetches documents matching a query from the Pgvector Document Store.