haystack/test/preview/components/rankers/test_similarity.py

112 lines
4.3 KiB
Python
Raw Normal View History

import pytest
from haystack.preview import Document, ComponentError
from haystack.preview.components.rankers.similarity import SimilarityRanker
class TestSimilarityRanker:
@pytest.mark.unit
def test_to_dict(self):
component = SimilarityRanker(model_name_or_path="cross-encoder/ms-marco-MiniLM-L-6-v2")
data = component.to_dict()
assert data == {
"type": "SimilarityRanker",
2023-10-12 13:52:01 +02:00
"init_parameters": {
"device": "cpu",
"top_k": 10,
"model_name_or_path": "cross-encoder/ms-marco-MiniLM-L-6-v2",
},
}
@pytest.mark.unit
def test_to_dict_with_custom_init_parameters(self):
component = SimilarityRanker()
data = component.to_dict()
assert data == {
"type": "SimilarityRanker",
2023-10-12 13:52:01 +02:00
"init_parameters": {
"device": "cpu",
"top_k": 10,
"model_name_or_path": "cross-encoder/ms-marco-MiniLM-L-6-v2",
},
}
@pytest.mark.integration
def test_from_dict(self):
data = {
"type": "SimilarityRanker",
2023-10-12 13:52:01 +02:00
"init_parameters": {
"device": "cpu",
"top_k": 10,
"model_name_or_path": "cross-encoder/ms-marco-MiniLM-L-6-v2",
},
}
component = SimilarityRanker.from_dict(data)
assert component.model_name_or_path == "cross-encoder/ms-marco-MiniLM-L-6-v2"
@pytest.mark.integration
@pytest.mark.parametrize(
"query,docs_before_texts,expected_first_text",
[
("City in Bosnia and Herzegovina", ["Berlin", "Belgrade", "Sarajevo"], "Sarajevo"),
("Machine learning", ["Python", "Bakery in Paris", "Tesla Giga Berlin"], "Python"),
("Cubist movement", ["Nirvana", "Pablo Picasso", "Coffee"], "Pablo Picasso"),
],
)
def test_run(self, query, docs_before_texts, expected_first_text):
"""
Test if the component ranks documents correctly.
"""
ranker = SimilarityRanker(model_name_or_path="cross-encoder/ms-marco-MiniLM-L-6-v2")
ranker.warm_up()
docs_before = [Document(text=text) for text in docs_before_texts]
output = ranker.run(query=query, documents=docs_before)
docs_after = output["documents"]
assert len(docs_after) == 3
assert docs_after[0].text == expected_first_text
sorted_scores = sorted([doc.score for doc in docs_after], reverse=True)
assert [doc.score for doc in docs_after] == sorted_scores
# Returns an empty list if no documents are provided
@pytest.mark.integration
def test_returns_empty_list_if_no_documents_are_provided(self):
sampler = SimilarityRanker()
sampler.warm_up()
output = sampler.run(query="City in Germany", documents=[])
assert output["documents"] == []
# Raises ComponentError if model is not warmed up
@pytest.mark.integration
def test_raises_component_error_if_model_not_warmed_up(self):
sampler = SimilarityRanker()
with pytest.raises(ComponentError):
sampler.run(query="query", documents=[Document(text="document")])
2023-10-12 13:52:01 +02:00
@pytest.mark.integration
@pytest.mark.parametrize(
"query,docs_before_texts,expected_first_text",
[
("City in Bosnia and Herzegovina", ["Berlin", "Belgrade", "Sarajevo"], "Sarajevo"),
("Machine learning", ["Python", "Bakery in Paris", "Tesla Giga Berlin"], "Python"),
("Cubist movement", ["Nirvana", "Pablo Picasso", "Coffee"], "Pablo Picasso"),
],
)
def test_run_top_k(self, query, docs_before_texts, expected_first_text):
"""
Test if the component ranks documents correctly with a custom top_k.
"""
ranker = SimilarityRanker(model_name_or_path="cross-encoder/ms-marco-MiniLM-L-6-v2", top_k=2)
ranker.warm_up()
docs_before = [Document(text=text) for text in docs_before_texts]
output = ranker.run(query=query, documents=docs_before)
docs_after = output["documents"]
assert len(docs_after) == 2
assert docs_after[0].text == expected_first_text
sorted_scores = sorted([doc.score for doc in docs_after], reverse=True)
assert [doc.score for doc in docs_after] == sorted_scores