2019-11-27 14:02:23 +01:00
|
|
|
from io import open
|
|
|
|
|
|
|
|
from setuptools import find_packages, setup
|
|
|
|
|
|
|
|
with open("requirements.txt") as f:
|
|
|
|
parsed_requirements = f.read().splitlines()
|
|
|
|
# remove blank lines and comments
|
|
|
|
parsed_requirements = [
|
|
|
|
x.strip()
|
|
|
|
for x in parsed_requirements
|
|
|
|
if ((x.strip()[0] != "#") and (len(x.strip()) > 3))
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
setup(
|
2019-11-27 16:17:45 +01:00
|
|
|
name="farm-haystack",
|
2019-11-27 14:02:23 +01:00
|
|
|
version="0.1.0",
|
|
|
|
author="Malte Pietsch, Timo Moeller, Branden Chan, Tanay Soni",
|
|
|
|
author_email="malte.pietsch@deepset.ai",
|
|
|
|
description="Neural Question Answering at Scale. Use modern transformer based models like BERT to find answers in large document collections",
|
|
|
|
long_description=open("readme.rst", "r", encoding="utf-8").read(),
|
|
|
|
long_description_content_type="text/x-rst",
|
|
|
|
keywords="QA Question-Answering Reader Retriever BERT roberta albert squad mrc transfer-learning language-model transformer",
|
|
|
|
license="Apache",
|
|
|
|
url="https://github.com/deepset-ai/haystack",
|
|
|
|
download_url="https://github.com/deepset-ai/haystack/archive/0.1.0.tar.gz",
|
|
|
|
packages=find_packages(exclude=["*.tests", "*.tests.*", "tests.*", "tests"]),
|
|
|
|
install_requires=parsed_requirements,
|
|
|
|
python_requires=">=3.6.0",
|
|
|
|
tests_require=["pytest"],
|
|
|
|
classifiers=[
|
|
|
|
"Intended Audience :: Science/Research",
|
|
|
|
"License :: OSI Approved :: Apache Software License",
|
|
|
|
"Programming Language :: Python :: 3",
|
|
|
|
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
|
|
|
],
|
|
|
|
)
|