haystack/test/benchmarks/retriever_simplified.py

72 lines
2.5 KiB
Python
Raw Normal View History

from haystack.document_store import MilvusDocumentStore
from haystack.retriever import DensePassageRetriever
from retriever import prepare_data
import datetime
from pprint import pprint
from milvus import IndexType
def main(index_type, n_docs=100_000, similarity="dot_product"):
doc_index = "document"
label_index = "label"
docs, labels = prepare_data(
data_dir="data/",
filename_gold="nq2squad-dev.json",
filename_negative="psgs_w100_minus_gold_100k.tsv",
remote_url="https://ext-haystack-retriever-eval.s3-eu-west-1.amazonaws.com/",
embeddings_filenames=["wikipedia_passages_100k.pkl"],
embeddings_dir="embeddings/",
n_docs=n_docs,
add_precomputed=True
)
if index_type == "flat":
doc_store = MilvusDocumentStore(index=doc_index, similarity=similarity)
elif index_type == "hnsw":
index_param = {"M": 64, "efConstruction": 80}
search_param = {"ef": 20}
doc_store = MilvusDocumentStore(
index=doc_index,
index_type=IndexType.HNSW,
index_param=index_param,
search_param=search_param,
similarity=similarity
)
doc_store.write_documents(documents=docs, index=doc_index)
doc_store.write_labels(labels=labels, index=label_index)
retriever = DensePassageRetriever(
document_store=doc_store,
query_embedding_model="facebook/dpr-question_encoder-single-nq-base",
passage_embedding_model="facebook/dpr-ctx_encoder-single-nq-base",
use_gpu=True,
use_fast_tokenizers=True
)
raw_results = retriever.eval(label_index=label_index, doc_index=doc_index)
results = {
"n_queries": raw_results["n_questions"],
"retrieve_time": raw_results["retrieve_time"],
"queries_per_second": raw_results["n_questions"] / raw_results["retrieve_time"],
"seconds_per_query": raw_results["retrieve_time"] / raw_results["n_questions"],
"recall": raw_results["recall"] * 100,
"map": raw_results["map"] * 100,
"top_k": raw_results["top_k"],
"date_time": datetime.datetime.now(),
"error": None
}
pprint(results)
doc_store.delete_all_documents(index=doc_index)
doc_store.delete_all_documents(index=label_index)
if __name__ == "__main__":
similarity = "l2"
n_docs = 100_000
main(index_type="flat", similarity=similarity, n_docs=n_docs)
main(index_type="hnsw", similarity=similarity, n_docs=n_docs)