haystack/test/evaluation/test_eval_exact_match.py

168 lines
6.3 KiB
Python
Raw Normal View History

from haystack import Pipeline
from haystack.dataclasses import GeneratedAnswer
from haystack.evaluation.eval import EvaluationResult
class TestExactMatch:
def create_evaluation_result(self, predictions, labels):
"""
Creates an evaluation result of a RAG pipeline using the list of predictions and labels for testing the exact match.
"""
runnable = Pipeline()
inputs = []
outputs = [
{"answer_builder": {"answers": [GeneratedAnswer(data=pred, query="", documents=[], meta={})]}}
for pred in predictions
]
expected_outputs = [
{"answer_builder": {"answers": [GeneratedAnswer(data=label, query="", documents=[], meta={})]}}
for label in labels
]
evaluation_result = EvaluationResult(runnable, inputs, outputs, expected_outputs)
return evaluation_result
def test_exact_match_empty_inputs(self):
"""
Test exact match with empty inputs
"""
runnable = Pipeline()
inputs = []
outputs = [
{"answer_builder": {"answers": []}},
{"answer_builder": {"answers": []}},
{"answer_builder": {"answers": []}},
]
expected_outputs = [
{"answer_builder": {"answers": []}},
{"answer_builder": {"answers": []}},
{"answer_builder": {"answers": []}},
]
evaluation_result = EvaluationResult(runnable, inputs, outputs, expected_outputs)
# Expecting 0% exact match for empty inputs
em_result = evaluation_result._calculate_em(output_key="answers")
assert em_result["exact_match"] == 0.0
def test_exact_match_same_inputs(self):
"""
Test exact match with default parameters
"""
predictions = ["OpenSource", "HaystackAI", "LLMs"]
labels = ["OpenSource", "HaystackAI", "LLMs"]
evaluation_result = self.create_evaluation_result(predictions, labels)
em_result = evaluation_result._calculate_em(output_key="answers")
assert em_result["exact_match"] == 1.0
def test_exact_match_single_word(self):
"""
Test exact match with single-word inputs
"""
predictions = ["OpenSource"]
labels = ["OpenSource"]
evaluation_result = self.create_evaluation_result(predictions, labels)
em_result = evaluation_result._calculate_em(output_key="answers")
assert em_result["exact_match"] == 1.0
def test_exact_match_negative_case(self):
"""
Test exact match with deliberately mismatched predictions and labels
"""
predictions = ["OpenSource", "HaystackAI", "LLMs"]
labels = ["Source", "HaystackAI", "LLMs"]
evaluation_result = self.create_evaluation_result(predictions, labels)
# Expecting EM to be 2/3 as 2 out of 3 items match
expected_em = 2 / 3
em_result = evaluation_result._calculate_em(output_key="answers")
assert em_result["exact_match"] == expected_em
def test_exact_match_ignore_case(self):
"""
Test exact match with ignoring case sensitivity
"""
predictions = ["OpenSource", "HaystackAI", "LLMs"]
labels = ["opensource", "HAYSTACKAI", "llMs"]
evaluation_result = self.create_evaluation_result(predictions, labels)
# Exact match after case ignoring
em_result = evaluation_result._calculate_em(output_key="answers", ignore_case=True)
assert em_result["exact_match"] == 1.0
def test_exact_match_ignore_punctuation(self):
"""
Test exact match with ignoring punctuation
"""
predictions = ["OpenSource!", "Haystack.AI", "LLMs,"]
labels = ["OpenSource", "HaystackAI", "LLMs"]
evaluation_result = self.create_evaluation_result(predictions, labels)
# Exact match after ignoring punctuation
em_result = evaluation_result._calculate_em(output_key="answers", ignore_punctuation=True)
assert em_result["exact_match"] == 1.0
def test_exact_match_ignore_numbers(self):
"""
Test exact match with ignoring numbers
"""
predictions = ["OpenSource123", "HaystackAI", "LLMs456"]
labels = ["OpenSource", "HaystackAI", "LLMs"]
evaluation_result = self.create_evaluation_result(predictions, labels)
# Exact match after ignoring numbers
em_result = evaluation_result._calculate_em(output_key="answers", ignore_numbers=True)
assert em_result["exact_match"] == 1.0
def test_exact_match_regex_ignore(self):
"""
Test exact match with ignoring specific regex patterns
"""
predictions = ["Open123Source", "HaystackAI", "LLMs456"]
labels = ["OpenSource", "HaystackAI", "LLMs"]
evaluation_result = self.create_evaluation_result(predictions, labels)
# Ignore numeric patterns
regex_to_ignore = [r"\d+"]
em_result = evaluation_result._calculate_em(output_key="answers", regexes_to_ignore=regex_to_ignore)
assert em_result["exact_match"] == 1.0
def test_exact_match_multiple_ignore_regex(self):
"""
Test exact match with multiple ignoring parameters
"""
predictions = ["Open123!Source", "Haystack.AI", "LLMs456,"]
labels = ["OpenSource", "HaystackAI", "LLMs"]
evaluation_result = self.create_evaluation_result(predictions, labels)
# Ignore numeric patterns and punctuation using regex
regex_to_ignore = [r"\d+", r"\W+"]
em_result = evaluation_result._calculate_em(output_key="answers", regexes_to_ignore=regex_to_ignore)
assert em_result["exact_match"] == 1.0
def test_exact_match_multiple_ignore_combination(self):
"""
Test exact match with multiple ignoring parameters combined
"""
predictions = ["Open%123!$Source", "Haystack.AI##", "^^LLMs456,"]
labels = ["OpenSource", "HaystackAI", "LLMs"]
evaluation_result = self.create_evaluation_result(predictions, labels)
# Ignore only special characters using regex
regex_to_ignore = [r"[^\w\s\d]+"]
em_result = evaluation_result._calculate_em(
output_key="answers",
ignore_numbers=True,
ignore_punctuation=True,
ignore_case=True,
regexes_to_ignore=regex_to_ignore,
)
assert em_result["exact_match"] == 1.0