haystack/test/prompt/test_handlers.py

139 lines
4.6 KiB
Python
Raw Normal View History

from unittest.mock import patch
import pytest
from haystack.nodes.prompt.invocation_layer.handlers import DefaultPromptHandler
@pytest.mark.unit
def test_prompt_handler_positive():
# prompt of length 5 + max_length of 3 = 8, which is less than model_max_length of 10, so no resize
mock_tokens = ["I", "am", "a", "tokenized", "prompt"]
mock_prompt = "I am a tokenized prompt"
with patch(
"haystack.nodes.prompt.invocation_layer.handlers.AutoTokenizer.from_pretrained", autospec=True
) as mock_tokenizer:
tokenizer_instance = mock_tokenizer.return_value
tokenizer_instance.tokenize.return_value = mock_tokens
tokenizer_instance.convert_tokens_to_string.return_value = mock_prompt
prompt_handler = DefaultPromptHandler("model_path", 10, 3)
# Test with a prompt that does not exceed model_max_length when tokenized
result = prompt_handler(mock_prompt)
assert result == {
"resized_prompt": mock_prompt,
"prompt_length": 5,
"new_prompt_length": 5,
"model_max_length": 10,
"max_length": 3,
}
@pytest.mark.unit
def test_prompt_handler_negative():
# prompt of length 8 + max_length of 3 = 11, which is more than model_max_length of 10, so we resize to 7
mock_tokens = ["I", "am", "a", "tokenized", "prompt", "of", "length", "eight"]
mock_prompt = "I am a tokenized prompt of length"
with patch(
"haystack.nodes.prompt.invocation_layer.handlers.AutoTokenizer.from_pretrained", autospec=True
) as mock_tokenizer:
tokenizer_instance = mock_tokenizer.return_value
tokenizer_instance.tokenize.return_value = mock_tokens
tokenizer_instance.convert_tokens_to_string.return_value = mock_prompt
prompt_handler = DefaultPromptHandler("model_path", 10, 3)
result = prompt_handler(mock_prompt)
assert result == {
"resized_prompt": mock_prompt,
"prompt_length": 8,
"new_prompt_length": 7,
"model_max_length": 10,
"max_length": 3,
}
@pytest.mark.integration
def test_prompt_handler_basics():
handler = DefaultPromptHandler(model_name_or_path="gpt2", model_max_length=20, max_length=10)
assert callable(handler)
handler = DefaultPromptHandler(model_name_or_path="gpt2", model_max_length=20)
assert handler.max_length == 100
@pytest.mark.integration
def test_gpt2_prompt_handler():
# test gpt2 BPE based tokenizer
handler = DefaultPromptHandler(model_name_or_path="gpt2", model_max_length=20, max_length=10)
# test no resize
assert handler("This is a test") == {
"prompt_length": 4,
"resized_prompt": "This is a test",
"max_length": 10,
"model_max_length": 20,
"new_prompt_length": 4,
}
# test resize
assert handler("This is a prompt that will be resized because it is longer than allowed") == {
"prompt_length": 15,
"resized_prompt": "This is a prompt that will be resized because",
"max_length": 10,
"model_max_length": 20,
"new_prompt_length": 10,
}
@pytest.mark.integration
def test_flan_prompt_handler_no_resize():
handler = DefaultPromptHandler(model_name_or_path="google/flan-t5-xxl", model_max_length=20, max_length=10)
assert handler("This is a test") == {
"prompt_length": 5,
"resized_prompt": "This is a test",
"max_length": 10,
"model_max_length": 20,
"new_prompt_length": 5,
}
@pytest.mark.integration
def test_flan_prompt_handler_resize():
handler = DefaultPromptHandler(model_name_or_path="google/flan-t5-xxl", model_max_length=20, max_length=10)
assert handler("This is a prompt that will be resized because it is longer than allowed") == {
"prompt_length": 17,
"resized_prompt": "This is a prompt that will be re",
"max_length": 10,
"model_max_length": 20,
"new_prompt_length": 10,
}
@pytest.mark.integration
def test_flan_prompt_handler_empty_string():
handler = DefaultPromptHandler(model_name_or_path="google/flan-t5-xxl", model_max_length=20, max_length=10)
assert handler("") == {
"prompt_length": 0,
"resized_prompt": "",
"max_length": 10,
"model_max_length": 20,
"new_prompt_length": 0,
}
@pytest.mark.integration
def test_flan_prompt_handler_none():
handler = DefaultPromptHandler(model_name_or_path="google/flan-t5-xxl", model_max_length=20, max_length=10)
assert handler(None) == {
"prompt_length": 0,
"resized_prompt": None,
"max_length": 10,
"model_max_length": 20,
"new_prompt_length": 0,
}