2021-10-15 16:34:48 +02:00
|
|
|
import pandas as pd
|
|
|
|
|
2021-10-25 15:50:23 +02:00
|
|
|
from haystack.schema import Document
|
|
|
|
from haystack.pipelines.base import Pipeline
|
2021-10-15 16:34:48 +02:00
|
|
|
|
|
|
|
|
|
|
|
def test_table_reader(table_reader):
|
|
|
|
data = {
|
|
|
|
"actors": ["brad pitt", "leonardo di caprio", "george clooney"],
|
|
|
|
"age": ["57", "46", "60"],
|
|
|
|
"number of movies": ["87", "53", "69"],
|
|
|
|
"date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
|
|
|
|
}
|
|
|
|
table = pd.DataFrame(data)
|
|
|
|
|
|
|
|
query = "When was DiCaprio born?"
|
|
|
|
prediction = table_reader.predict(query=query, documents=[Document(content=table, content_type="table")])
|
|
|
|
assert prediction["answers"][0].answer == "10 june 1996"
|
|
|
|
assert prediction["answers"][0].offsets_in_context[0].start == 7
|
|
|
|
assert prediction["answers"][0].offsets_in_context[0].end == 8
|
|
|
|
|
|
|
|
# test aggregation
|
|
|
|
query = "How old are DiCaprio and Pitt on average?"
|
|
|
|
prediction = table_reader.predict(query=query, documents=[Document(content=table, content_type="table")])
|
|
|
|
assert prediction["answers"][0].answer == "51.5"
|
|
|
|
assert prediction["answers"][0].meta["answer_cells"] == ["57", "46"]
|
|
|
|
assert prediction["answers"][0].meta["aggregation_operator"] == "AVERAGE"
|
|
|
|
assert prediction["answers"][0].offsets_in_context[0].start == 1
|
|
|
|
assert prediction["answers"][0].offsets_in_context[0].end == 2
|
|
|
|
assert prediction["answers"][0].offsets_in_context[1].start == 5
|
|
|
|
assert prediction["answers"][0].offsets_in_context[1].end == 6
|
|
|
|
|
|
|
|
|
|
|
|
def test_table_reader_in_pipeline(table_reader):
|
|
|
|
pipeline = Pipeline()
|
|
|
|
pipeline.add_node(table_reader, "TableReader", ["Query"])
|
|
|
|
data = {
|
|
|
|
"actors": ["brad pitt", "leonardo di caprio", "george clooney"],
|
|
|
|
"age": ["57", "46", "60"],
|
|
|
|
"number of movies": ["87", "53", "69"],
|
|
|
|
"date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
|
|
|
|
}
|
|
|
|
|
|
|
|
table = pd.DataFrame(data)
|
|
|
|
query = "Which actors played in more than 60 movies?"
|
|
|
|
|
|
|
|
prediction = pipeline.run(query=query, documents=[Document(content=table, content_type="table")])
|
|
|
|
|
|
|
|
assert prediction["answers"][0].answer == "brad pitt, george clooney"
|
|
|
|
assert prediction["answers"][0].meta["aggregation_operator"] == "NONE"
|
|
|
|
assert prediction["answers"][0].offsets_in_context[0].start == 0
|
|
|
|
assert prediction["answers"][0].offsets_in_context[0].end == 1
|
|
|
|
assert prediction["answers"][0].offsets_in_context[1].start == 8
|
|
|
|
assert prediction["answers"][0].offsets_in_context[1].end == 9
|
|
|
|
|
|
|
|
|
|
|
|
def test_table_reader_aggregation(table_reader):
|
|
|
|
data = {
|
|
|
|
"Mountain": ["Mount Everest", "K2", "Kangchenjunga", "Lhotse", "Makalu"],
|
|
|
|
"Height": ["8848m", "8,611 m", "8 586m", "8 516 m", "8,485m"]
|
|
|
|
}
|
|
|
|
table = pd.DataFrame(data)
|
|
|
|
|
|
|
|
query = "How tall are all mountains on average?"
|
|
|
|
prediction = table_reader.predict(query=query, documents=[Document(content=table, content_type="table")])
|
|
|
|
assert prediction["answers"][0].answer == "8609.2 m"
|
|
|
|
assert prediction["answers"][0].meta["aggregation_operator"] == "AVERAGE"
|
|
|
|
assert prediction["answers"][0].meta["answer_cells"] == ['8848m', '8,611 m', '8 586m', '8 516 m', '8,485m']
|
|
|
|
|
|
|
|
query = "How tall are all mountains together?"
|
|
|
|
prediction = table_reader.predict(query=query, documents=[Document(content=table, content_type="table")])
|
|
|
|
assert prediction["answers"][0].answer == "43046.0 m"
|
|
|
|
assert prediction["answers"][0].meta["aggregation_operator"] == "SUM"
|
|
|
|
assert prediction["answers"][0].meta["answer_cells"] == ['8848m', '8,611 m', '8 586m', '8 516 m', '8,485m']
|
|
|
|
|