haystack/e2e/pipelines/test_rag_pipelines_e2e.py

159 lines
6.7 KiB
Python
Raw Normal View History

import os
import json
import pytest
2023-11-24 14:48:43 +01:00
from haystack import Pipeline, Document
from haystack.document_stores.in_memory import InMemoryDocumentStore
2023-11-24 14:48:43 +01:00
from haystack.components.writers import DocumentWriter
from haystack.components.retrievers.in_memory import InMemoryBM25Retriever, InMemoryEmbeddingRetriever
2023-11-24 14:48:43 +01:00
from haystack.components.embedders import SentenceTransformersTextEmbedder, SentenceTransformersDocumentEmbedder
from haystack.components.generators import OpenAIGenerator
2023-11-24 14:48:43 +01:00
from haystack.components.builders.answer_builder import AnswerBuilder
from haystack.components.builders.prompt_builder import PromptBuilder
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
def test_bm25_rag_pipeline(tmp_path):
# Create the RAG pipeline
prompt_template = """
Given these documents, answer the question.\nDocuments:
{% for doc in documents %}
{{ doc.content }}
{% endfor %}
\nQuestion: {{question}}
\nAnswer:
"""
rag_pipeline = Pipeline()
rag_pipeline.add_component(instance=InMemoryBM25Retriever(document_store=InMemoryDocumentStore()), name="retriever")
rag_pipeline.add_component(instance=PromptBuilder(template=prompt_template), name="prompt_builder")
rag_pipeline.add_component(instance=OpenAIGenerator(api_key=os.environ.get("OPENAI_API_KEY")), name="llm")
rag_pipeline.add_component(instance=AnswerBuilder(), name="answer_builder")
rag_pipeline.connect("retriever", "prompt_builder.documents")
rag_pipeline.connect("prompt_builder", "llm")
rag_pipeline.connect("llm.replies", "answer_builder.replies")
rag_pipeline.connect("llm.meta", "answer_builder.meta")
rag_pipeline.connect("retriever", "answer_builder.documents")
# Draw the pipeline
rag_pipeline.draw(tmp_path / "test_bm25_rag_pipeline.png")
# Serialize the pipeline to JSON
with open(tmp_path / "test_bm25_rag_pipeline.json", "w") as f:
json.dump(rag_pipeline.to_dict(), f)
# Load the pipeline back
with open(tmp_path / "test_bm25_rag_pipeline.json", "r") as f:
rag_pipeline = Pipeline.from_dict(json.load(f))
# Populate the document store
documents = [
Document(content="My name is Jean and I live in Paris."),
Document(content="My name is Mark and I live in Berlin."),
Document(content="My name is Giorgio and I live in Rome."),
]
rag_pipeline.get_component("retriever").document_store.write_documents(documents)
# Query and assert
questions = ["Who lives in Paris?", "Who lives in Berlin?", "Who lives in Rome?"]
answers_spywords = ["Jean", "Mark", "Giorgio"]
for question, spyword in zip(questions, answers_spywords):
result = rag_pipeline.run(
{
"retriever": {"query": question},
"prompt_builder": {"question": question},
"answer_builder": {"query": question},
}
)
assert len(result["answer_builder"]["answers"]) == 1
generated_answer = result["answer_builder"]["answers"][0]
assert spyword in generated_answer.data
assert generated_answer.query == question
assert hasattr(generated_answer, "documents")
assert hasattr(generated_answer, "meta")
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
def test_embedding_retrieval_rag_pipeline(tmp_path):
# Create the RAG pipeline
prompt_template = """
Given these documents, answer the question.\nDocuments:
{% for doc in documents %}
{{ doc.content }}
{% endfor %}
\nQuestion: {{question}}
\nAnswer:
"""
rag_pipeline = Pipeline()
rag_pipeline.add_component(
instance=SentenceTransformersTextEmbedder(model="sentence-transformers/all-MiniLM-L6-v2"), name="text_embedder"
)
rag_pipeline.add_component(
instance=InMemoryEmbeddingRetriever(document_store=InMemoryDocumentStore()), name="retriever"
)
rag_pipeline.add_component(instance=PromptBuilder(template=prompt_template), name="prompt_builder")
rag_pipeline.add_component(instance=OpenAIGenerator(api_key=os.environ.get("OPENAI_API_KEY")), name="llm")
rag_pipeline.add_component(instance=AnswerBuilder(), name="answer_builder")
rag_pipeline.connect("text_embedder", "retriever")
rag_pipeline.connect("retriever", "prompt_builder.documents")
rag_pipeline.connect("prompt_builder", "llm")
rag_pipeline.connect("llm.replies", "answer_builder.replies")
rag_pipeline.connect("llm.meta", "answer_builder.meta")
rag_pipeline.connect("retriever", "answer_builder.documents")
# Draw the pipeline
rag_pipeline.draw(tmp_path / "test_embedding_rag_pipeline.png")
# Serialize the pipeline to JSON
with open(tmp_path / "test_embedding_rag_pipeline.json", "w") as f:
json.dump(rag_pipeline.to_dict(), f)
# Load the pipeline back
with open(tmp_path / "test_embedding_rag_pipeline.json", "r") as f:
rag_pipeline = Pipeline.from_dict(json.load(f))
# Populate the document store
documents = [
Document(content="My name is Jean and I live in Paris."),
Document(content="My name is Mark and I live in Berlin."),
Document(content="My name is Giorgio and I live in Rome."),
]
document_store = rag_pipeline.get_component("retriever").document_store
indexing_pipeline = Pipeline()
indexing_pipeline.add_component(
instance=SentenceTransformersDocumentEmbedder(model="sentence-transformers/all-MiniLM-L6-v2"),
name="document_embedder",
)
indexing_pipeline.add_component(instance=DocumentWriter(document_store=document_store), name="document_writer")
indexing_pipeline.connect("document_embedder", "document_writer")
indexing_pipeline.run({"document_embedder": {"documents": documents}})
# Query and assert
questions = ["Who lives in Paris?", "Who lives in Berlin?", "Who lives in Rome?"]
answers_spywords = ["Jean", "Mark", "Giorgio"]
for question, spyword in zip(questions, answers_spywords):
result = rag_pipeline.run(
{
"text_embedder": {"text": question},
"prompt_builder": {"question": question},
"answer_builder": {"query": question},
}
)
assert len(result["answer_builder"]["answers"]) == 1
generated_answer = result["answer_builder"]["answers"][0]
assert spyword in generated_answer.data
assert generated_answer.query == question
assert hasattr(generated_answer, "documents")
assert hasattr(generated_answer, "meta")