haystack/test/components/embedders/test_openai_document_embedder.py

289 lines
11 KiB
Python
Raw Normal View History

from unittest.mock import patch
from typing import List, cast
import pytest
import numpy as np
import openai
from openai.util import convert_to_openai_object
from openai.openai_object import OpenAIObject
from haystack.preview import Document
from haystack.preview.components.embedders.openai_document_embedder import OpenAIDocumentEmbedder
def mock_openai_response(input: List[str], model: str = "text-embedding-ada-002", **kwargs) -> OpenAIObject:
dict_response = {
"object": "list",
"data": [
{"object": "embedding", "index": i, "embedding": np.random.rand(1536).tolist()} for i in range(len(input))
],
"model": model,
"usage": {"prompt_tokens": 4, "total_tokens": 4},
}
return cast(OpenAIObject, convert_to_openai_object(dict_response))
class TestOpenAIDocumentEmbedder:
@pytest.mark.unit
def test_init_default(self, monkeypatch):
openai.api_key = None
monkeypatch.setenv("OPENAI_API_KEY", "fake-api-key")
embedder = OpenAIDocumentEmbedder()
assert openai.api_key == "fake-api-key"
assert embedder.model_name == "text-embedding-ada-002"
assert embedder.organization is None
assert embedder.prefix == ""
assert embedder.suffix == ""
assert embedder.batch_size == 32
assert embedder.progress_bar is True
assert embedder.metadata_fields_to_embed == []
assert embedder.embedding_separator == "\n"
@pytest.mark.unit
def test_init_with_parameters(self):
embedder = OpenAIDocumentEmbedder(
api_key="fake-api-key",
model_name="model",
organization="my-org",
prefix="prefix",
suffix="suffix",
batch_size=64,
progress_bar=False,
metadata_fields_to_embed=["test_field"],
embedding_separator=" | ",
)
assert openai.api_key == "fake-api-key"
assert openai.organization == "my-org"
assert embedder.organization == "my-org"
assert embedder.model_name == "model"
assert embedder.prefix == "prefix"
assert embedder.suffix == "suffix"
assert embedder.batch_size == 64
assert embedder.progress_bar is False
assert embedder.metadata_fields_to_embed == ["test_field"]
assert embedder.embedding_separator == " | "
@pytest.mark.unit
def test_init_fail_wo_api_key(self, monkeypatch):
openai.api_key = None
monkeypatch.delenv("OPENAI_API_KEY", raising=False)
with pytest.raises(ValueError, match="OpenAIDocumentEmbedder expects an OpenAI API key"):
OpenAIDocumentEmbedder()
@pytest.mark.unit
def test_to_dict(self):
component = OpenAIDocumentEmbedder(api_key="fake-api-key")
data = component.to_dict()
assert data == {
"type": "haystack.preview.components.embedders.openai_document_embedder.OpenAIDocumentEmbedder",
"init_parameters": {
"model_name": "text-embedding-ada-002",
"organization": None,
"prefix": "",
"suffix": "",
"batch_size": 32,
"progress_bar": True,
"metadata_fields_to_embed": [],
"embedding_separator": "\n",
},
}
@pytest.mark.unit
def test_to_dict_with_custom_init_parameters(self):
component = OpenAIDocumentEmbedder(
api_key="fake-api-key",
model_name="model",
organization="my-org",
prefix="prefix",
suffix="suffix",
batch_size=64,
progress_bar=False,
metadata_fields_to_embed=["test_field"],
embedding_separator=" | ",
)
data = component.to_dict()
assert data == {
"type": "haystack.preview.components.embedders.openai_document_embedder.OpenAIDocumentEmbedder",
"init_parameters": {
"model_name": "model",
"organization": "my-org",
"prefix": "prefix",
"suffix": "suffix",
"batch_size": 64,
"progress_bar": False,
"metadata_fields_to_embed": ["test_field"],
"embedding_separator": " | ",
},
}
@pytest.mark.unit
def test_prepare_texts_to_embed_w_metadata(self):
documents = [
Document(content=f"document number {i}:\ncontent", meta={"meta_field": f"meta_value {i}"}) for i in range(5)
]
embedder = OpenAIDocumentEmbedder(
api_key="fake-api-key", metadata_fields_to_embed=["meta_field"], embedding_separator=" | "
)
prepared_texts = embedder._prepare_texts_to_embed(documents)
# note that newline is replaced by space
assert prepared_texts == [
"meta_value 0 | document number 0: content",
"meta_value 1 | document number 1: content",
"meta_value 2 | document number 2: content",
"meta_value 3 | document number 3: content",
"meta_value 4 | document number 4: content",
]
@pytest.mark.unit
def test_prepare_texts_to_embed_w_suffix(self):
documents = [Document(content=f"document number {i}") for i in range(5)]
embedder = OpenAIDocumentEmbedder(api_key="fake-api-key", prefix="my_prefix ", suffix=" my_suffix")
prepared_texts = embedder._prepare_texts_to_embed(documents)
assert prepared_texts == [
"my_prefix document number 0 my_suffix",
"my_prefix document number 1 my_suffix",
"my_prefix document number 2 my_suffix",
"my_prefix document number 3 my_suffix",
"my_prefix document number 4 my_suffix",
]
@pytest.mark.unit
def test_embed_batch(self):
texts = ["text 1", "text 2", "text 3", "text 4", "text 5"]
with patch(
"haystack.preview.components.embedders.openai_document_embedder.openai.Embedding"
) as openai_embedding_patch:
openai_embedding_patch.create.side_effect = mock_openai_response
embedder = OpenAIDocumentEmbedder(api_key="fake-api-key", model_name="model")
embeddings, metadata = embedder._embed_batch(texts_to_embed=texts, batch_size=2)
assert openai_embedding_patch.create.call_count == 3
assert isinstance(embeddings, list)
assert len(embeddings) == len(texts)
for embedding in embeddings:
assert isinstance(embedding, list)
assert len(embedding) == 1536
assert all(isinstance(x, float) for x in embedding)
# openai.Embedding.create is called 3 times
assert metadata == {"model": "model", "usage": {"prompt_tokens": 3 * 4, "total_tokens": 3 * 4}}
@pytest.mark.unit
def test_run(self):
docs = [
Document(content="I love cheese", meta={"topic": "Cuisine"}),
Document(content="A transformer is a deep learning architecture", meta={"topic": "ML"}),
]
model = "text-similarity-ada-001"
with patch(
"haystack.preview.components.embedders.openai_document_embedder.openai.Embedding"
) as openai_embedding_patch:
openai_embedding_patch.create.side_effect = mock_openai_response
embedder = OpenAIDocumentEmbedder(
api_key="fake-api-key",
model_name=model,
prefix="prefix ",
suffix=" suffix",
metadata_fields_to_embed=["topic"],
embedding_separator=" | ",
)
result = embedder.run(documents=docs)
openai_embedding_patch.create.assert_called_once_with(
model=model,
input=[
"prefix Cuisine | I love cheese suffix",
"prefix ML | A transformer is a deep learning architecture suffix",
],
)
documents_with_embeddings = result["documents"]
metadata = result["metadata"]
assert isinstance(documents_with_embeddings, list)
assert len(documents_with_embeddings) == len(docs)
for doc in documents_with_embeddings:
assert isinstance(doc, Document)
assert isinstance(doc.embedding, list)
assert len(doc.embedding) == 1536
assert all(isinstance(x, float) for x in doc.embedding)
assert metadata == {"model": model, "usage": {"prompt_tokens": 4, "total_tokens": 4}}
@pytest.mark.unit
def test_run_custom_batch_size(self):
docs = [
Document(content="I love cheese", meta={"topic": "Cuisine"}),
Document(content="A transformer is a deep learning architecture", meta={"topic": "ML"}),
]
model = "text-similarity-ada-001"
with patch(
"haystack.preview.components.embedders.openai_document_embedder.openai.Embedding"
) as openai_embedding_patch:
openai_embedding_patch.create.side_effect = mock_openai_response
embedder = OpenAIDocumentEmbedder(
api_key="fake-api-key",
model_name=model,
prefix="prefix ",
suffix=" suffix",
metadata_fields_to_embed=["topic"],
embedding_separator=" | ",
batch_size=1,
)
result = embedder.run(documents=docs)
assert openai_embedding_patch.create.call_count == 2
documents_with_embeddings = result["documents"]
metadata = result["metadata"]
assert isinstance(documents_with_embeddings, list)
assert len(documents_with_embeddings) == len(docs)
for doc in documents_with_embeddings:
assert isinstance(doc, Document)
assert isinstance(doc.embedding, list)
assert len(doc.embedding) == 1536
assert all(isinstance(x, float) for x in doc.embedding)
# openai.Embedding.create is called 2 times
assert metadata == {"model": model, "usage": {"prompt_tokens": 2 * 4, "total_tokens": 2 * 4}}
@pytest.mark.unit
def test_run_wrong_input_format(self):
embedder = OpenAIDocumentEmbedder(api_key="fake-api-key")
# wrong formats
string_input = "text"
list_integers_input = [1, 2, 3]
with pytest.raises(TypeError, match="OpenAIDocumentEmbedder expects a list of Documents as input"):
embedder.run(documents=string_input)
with pytest.raises(TypeError, match="OpenAIDocumentEmbedder expects a list of Documents as input"):
embedder.run(documents=list_integers_input)
@pytest.mark.unit
def test_run_on_empty_list(self):
embedder = OpenAIDocumentEmbedder(api_key="fake-api-key")
empty_list_input = []
result = embedder.run(documents=empty_list_input)
assert result["documents"] is not None
assert not result["documents"] # empty list