haystack/examples/conversational_agent.py

67 lines
2.5 KiB
Python
Raw Normal View History

2023-05-17 15:19:09 +02:00
import os
from haystack.agents.base import Tool
2023-05-17 15:19:09 +02:00
from haystack.agents.conversational import ConversationalAgent
from haystack.agents.memory import ConversationSummaryMemory
from haystack.nodes import PromptNode, WebRetriever, PromptTemplate
from haystack.pipelines import WebQAPipeline
from haystack.agents.types import Color
search_api_key = os.environ.get("SEARCH_API_KEY")
if not search_api_key:
raise ValueError("Please set the SEARCH_API_KEY environment variable")
openai_api_key = os.environ.get("OPENAI_API_KEY")
if not openai_api_key:
raise ValueError("Please set the OPENAI_API_KEY environment variable")
web_prompt = """
Synthesize a comprehensive answer from the following most relevant paragraphs and the given question.
Provide a clear and concise answer, no longer than 10-20 words.
\n\n Paragraphs: {documents} \n\n Question: {query} \n\n Answer:
"""
web_prompt_node = PromptNode(
"gpt-3.5-turbo", default_prompt_template=PromptTemplate(prompt=web_prompt), api_key=openai_api_key
)
web_retriever = WebRetriever(api_key=search_api_key, top_search_results=3, mode="snippets")
pipeline = WebQAPipeline(retriever=web_retriever, prompt_node=web_prompt_node)
web_qa_tool = Tool(
name="Search",
pipeline_or_node=pipeline,
description="useful for when you need to Google questions if you cannot find answers in the the previous conversation",
output_variable="results",
logging_color=Color.MAGENTA,
)
conversational_agent_prompt_node = PromptNode(
"gpt-3.5-turbo",
api_key=openai_api_key,
max_length=256,
stop_words=["Observation:"],
model_kwargs={"temperature": 0.5, "top_p": 0.9},
)
memory = ConversationSummaryMemory(conversational_agent_prompt_node, summary_frequency=2)
conversational_agent = ConversationalAgent(
prompt_node=conversational_agent_prompt_node, tools=[web_qa_tool], memory=memory
)
test = False
if test:
questions = [
"Why was Jamie Foxx recently hospitalized?",
"Where was he hospitalized?",
"What movie was he filming at the time?",
"Who is Jamie's female co-star in the movie he was filing at that time?",
"Tell me more about her, who is her partner?",
]
for question in questions:
conversational_agent.run(question)
else:
while True:
user_input = input("\nHuman (type 'exit' or 'quit' to quit): ")
if user_input.lower() == "exit" or user_input.lower() == "quit":
break
response = conversational_agent.run(user_input)