haystack/rest_api/controller/file_upload.py

89 lines
2.9 KiB
Python
Raw Normal View History

from typing import Optional, List
import json
import shutil
import uuid
from pathlib import Path
from fastapi import FastAPI, APIRouter, UploadFile, File, Form, HTTPException, Depends
from pydantic import BaseModel
from haystack import Pipeline
from haystack.nodes import BaseConverter, PreProcessor
from rest_api.utils import get_app, get_pipelines
from rest_api.config import FILE_UPLOAD_PATH
from rest_api.controller.utils import as_form
router = APIRouter()
app: FastAPI = get_app()
indexing_pipeline: Pipeline = get_pipelines().get("indexing_pipeline", None)
@as_form
class FileConverterParams(BaseModel):
remove_numeric_tables: Optional[bool] = None
valid_languages: Optional[List[str]] = None
@as_form
class PreprocessorParams(BaseModel):
clean_whitespace: Optional[bool] = None
clean_empty_lines: Optional[bool] = None
clean_header_footer: Optional[bool] = None
split_by: Optional[str] = None
split_length: Optional[int] = None
split_overlap: Optional[int] = None
split_respect_sentence_boundary: Optional[bool] = None
class Response(BaseModel):
file_id: str
@router.post("/file-upload")
def upload_file(
files: List[UploadFile] = File(...),
# JSON serialized string
meta: Optional[str] = Form("null"), # type: ignore
fileconverter_params: FileConverterParams = Depends(FileConverterParams.as_form), # type: ignore
preprocessor_params: PreprocessorParams = Depends(PreprocessorParams.as_form), # type: ignore
):
"""
You can use this endpoint to upload a file for indexing
(see https://haystack.deepset.ai/guides/rest-api#indexing-documents-in-the-haystack-rest-api-document-store).
"""
if not indexing_pipeline:
raise HTTPException(status_code=501, detail="Indexing Pipeline is not configured.")
file_paths: list = []
file_metas: list = []
meta_form = json.loads(meta) or {} # type: ignore
if not isinstance(meta_form, dict):
raise HTTPException(status_code=500, detail=f"The meta field must be a dict or None, not {type(meta_form)}")
for file in files:
try:
file_path = Path(FILE_UPLOAD_PATH) / f"{uuid.uuid4().hex}_{file.filename}"
with file_path.open("wb") as buffer:
shutil.copyfileobj(file.file, buffer)
file_paths.append(file_path)
meta_form["name"] = file.filename
file_metas.append(meta_form)
finally:
file.file.close()
# Find nodes names
converters = indexing_pipeline.get_nodes_by_class(BaseConverter)
preprocessors = indexing_pipeline.get_nodes_by_class(PreProcessor)
params = {}
for converter in converters:
params[converter.name] = fileconverter_params.dict()
for preprocessor in preprocessors:
params[preprocessor.name] = preprocessor_params.dict()
indexing_pipeline.run(file_paths=file_paths, meta=file_metas, params=params)