haystack/test/test_eval.py

875 lines
40 KiB
Python
Raw Normal View History

import pytest
Refactoring of the `haystack` package (#1624) * Files moved, imports all broken * Fix most imports and docstrings into * Fix the paths to the modules in the API docs * Add latest docstring and tutorial changes * Add a few pipelines that were lost in the inports * Fix a bunch of mypy warnings * Add latest docstring and tutorial changes * Create a file_classifier module * Add docs for file_classifier * Fixed most circular imports, now the REST API can start * Add latest docstring and tutorial changes * Tackling more mypy issues * Reintroduce from FARM and fix last mypy issues hopefully * Re-enable old-style imports * Fix some more import from the top-level package in an attempt to sort out circular imports * Fix some imports in tests to new-style to prevent failed class equalities from breaking tests * Change document_store into document_stores * Update imports in tutorials * Add latest docstring and tutorial changes * Probably fixes summarizer tests * Improve the old-style import allowing module imports (should work) * Try to fix the docs * Remove dedicated KnowledgeGraph page from autodocs * Remove dedicated GraphRetriever page from autodocs * Fix generate_docstrings.sh with an updated list of yaml files to look for * Fix some more modules in the docs * Fix the document stores docs too * Fix a small issue on Tutorial14 * Add latest docstring and tutorial changes * Add deprecation warning to old-style imports * Remove stray folder and import Dict into dense.py * Change import path for MLFlowLogger * Add old loggers path to the import path aliases * Fix debug output of convert_ipynb.py * Fix circular import on BaseRetriever * Missed one merge block * re-run tutorial 5 * Fix imports in tutorial 5 * Re-enable squad_to_dpr CLI from the root package and move get_batches_from_generator into document_stores.base * Add latest docstring and tutorial changes * Fix typo in utils __init__ * Fix a few more imports * Fix benchmarks too * New-style imports in test_knowledge_graph * Rollback setup.py * Rollback squad_to_dpr too Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-10-25 15:50:23 +02:00
from haystack.document_stores.base import BaseDocumentStore
Calculation of metrics and presentation of eval results (#1760) * retriever metrics added * Add latest docstring and tutorial changes * answer and document level matching metrics implemented * Add latest docstring and tutorial changes * answer related metrics for retriever * basic reader metrics implemented * handle no_answers * fix typing * fix tests * fix tests without sas * first draft for simulated top k * rename sas and f1 columns in dataframe * refactoring of EvaluationResult * Add latest docstring and tutorial changes * more eval tests added * fix sas expected value precision * distinction between ir and qa recall * EvaluationResult.worst_queries() implemented * print_evaluation_report() added * eval report for QA Pipeline improved * dynamic metrics for worst queries calc * Add latest docstring and tutorial changes * method names adjusted * simple test for print_eval_report() added * improved documentation * Add latest docstring and tutorial changes * minor formatting * Add latest docstring and tutorial changes * fix no_answer cases * adjust one docstring * Add latest docstring and tutorial changes * fix no_answer cases for sas * batchmode for sas implemented * fix for retriever metrics if there are only no_answers * fix multilabel tests * improve documentation for pipeline.eval() * streamline multilabel aggregates and docs * Add latest docstring and tutorial changes * fix multilabel tests * unify document_id * add dataframe schema description to EvaluationResult * Add latest docstring and tutorial changes * rename worst_queries to wrong_examples * Add latest docstring and tutorial changes * make query digesting standard pipelines work with pipeline.eval() * Add latest docstring and tutorial changes * tests for multi retriever pipelines added * remove unnecessary import * print_eval_report(): support all pipelines without junctions * Add latest docstring and tutorial changes * fix typos * Add latest docstring and tutorial changes * fix minor simulated_top_k bug and use memory documentstore throughout tests * sas model param description improved * Add latest docstring and tutorial changes * rename recall metrics * Add latest docstring and tutorial changes * fix mean average precision link * Add latest docstring and tutorial changes * adjust sas description docstring * Add latest docstring and tutorial changes * Add latest docstring and tutorial changes Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: Malte Pietsch <malte.pietsch@deepset.ai>
2021-11-30 19:26:34 +01:00
from haystack.document_stores.elasticsearch import ElasticsearchDocumentStore
Refactoring of the `haystack` package (#1624) * Files moved, imports all broken * Fix most imports and docstrings into * Fix the paths to the modules in the API docs * Add latest docstring and tutorial changes * Add a few pipelines that were lost in the inports * Fix a bunch of mypy warnings * Add latest docstring and tutorial changes * Create a file_classifier module * Add docs for file_classifier * Fixed most circular imports, now the REST API can start * Add latest docstring and tutorial changes * Tackling more mypy issues * Reintroduce from FARM and fix last mypy issues hopefully * Re-enable old-style imports * Fix some more import from the top-level package in an attempt to sort out circular imports * Fix some imports in tests to new-style to prevent failed class equalities from breaking tests * Change document_store into document_stores * Update imports in tutorials * Add latest docstring and tutorial changes * Probably fixes summarizer tests * Improve the old-style import allowing module imports (should work) * Try to fix the docs * Remove dedicated KnowledgeGraph page from autodocs * Remove dedicated GraphRetriever page from autodocs * Fix generate_docstrings.sh with an updated list of yaml files to look for * Fix some more modules in the docs * Fix the document stores docs too * Fix a small issue on Tutorial14 * Add latest docstring and tutorial changes * Add deprecation warning to old-style imports * Remove stray folder and import Dict into dense.py * Change import path for MLFlowLogger * Add old loggers path to the import path aliases * Fix debug output of convert_ipynb.py * Fix circular import on BaseRetriever * Missed one merge block * re-run tutorial 5 * Fix imports in tutorial 5 * Re-enable squad_to_dpr CLI from the root package and move get_batches_from_generator into document_stores.base * Add latest docstring and tutorial changes * Fix typo in utils __init__ * Fix a few more imports * Fix benchmarks too * New-style imports in test_knowledge_graph * Rollback setup.py * Rollback squad_to_dpr too Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-10-25 15:50:23 +02:00
from haystack.nodes.preprocessor import PreProcessor
from haystack.nodes.evaluator import EvalAnswers, EvalDocuments
Calculation of metrics and presentation of eval results (#1760) * retriever metrics added * Add latest docstring and tutorial changes * answer and document level matching metrics implemented * Add latest docstring and tutorial changes * answer related metrics for retriever * basic reader metrics implemented * handle no_answers * fix typing * fix tests * fix tests without sas * first draft for simulated top k * rename sas and f1 columns in dataframe * refactoring of EvaluationResult * Add latest docstring and tutorial changes * more eval tests added * fix sas expected value precision * distinction between ir and qa recall * EvaluationResult.worst_queries() implemented * print_evaluation_report() added * eval report for QA Pipeline improved * dynamic metrics for worst queries calc * Add latest docstring and tutorial changes * method names adjusted * simple test for print_eval_report() added * improved documentation * Add latest docstring and tutorial changes * minor formatting * Add latest docstring and tutorial changes * fix no_answer cases * adjust one docstring * Add latest docstring and tutorial changes * fix no_answer cases for sas * batchmode for sas implemented * fix for retriever metrics if there are only no_answers * fix multilabel tests * improve documentation for pipeline.eval() * streamline multilabel aggregates and docs * Add latest docstring and tutorial changes * fix multilabel tests * unify document_id * add dataframe schema description to EvaluationResult * Add latest docstring and tutorial changes * rename worst_queries to wrong_examples * Add latest docstring and tutorial changes * make query digesting standard pipelines work with pipeline.eval() * Add latest docstring and tutorial changes * tests for multi retriever pipelines added * remove unnecessary import * print_eval_report(): support all pipelines without junctions * Add latest docstring and tutorial changes * fix typos * Add latest docstring and tutorial changes * fix minor simulated_top_k bug and use memory documentstore throughout tests * sas model param description improved * Add latest docstring and tutorial changes * rename recall metrics * Add latest docstring and tutorial changes * fix mean average precision link * Add latest docstring and tutorial changes * adjust sas description docstring * Add latest docstring and tutorial changes * Add latest docstring and tutorial changes Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: Malte Pietsch <malte.pietsch@deepset.ai>
2021-11-30 19:26:34 +01:00
from haystack.nodes.query_classifier.transformers import TransformersQueryClassifier
from haystack.nodes.retriever.dense import DensePassageRetriever, EmbeddingRetriever
from haystack.nodes.retriever.sparse import ElasticsearchRetriever
from haystack.document_stores.memory import InMemoryDocumentStore
Refactoring of the `haystack` package (#1624) * Files moved, imports all broken * Fix most imports and docstrings into * Fix the paths to the modules in the API docs * Add latest docstring and tutorial changes * Add a few pipelines that were lost in the inports * Fix a bunch of mypy warnings * Add latest docstring and tutorial changes * Create a file_classifier module * Add docs for file_classifier * Fixed most circular imports, now the REST API can start * Add latest docstring and tutorial changes * Tackling more mypy issues * Reintroduce from FARM and fix last mypy issues hopefully * Re-enable old-style imports * Fix some more import from the top-level package in an attempt to sort out circular imports * Fix some imports in tests to new-style to prevent failed class equalities from breaking tests * Change document_store into document_stores * Update imports in tutorials * Add latest docstring and tutorial changes * Probably fixes summarizer tests * Improve the old-style import allowing module imports (should work) * Try to fix the docs * Remove dedicated KnowledgeGraph page from autodocs * Remove dedicated GraphRetriever page from autodocs * Fix generate_docstrings.sh with an updated list of yaml files to look for * Fix some more modules in the docs * Fix the document stores docs too * Fix a small issue on Tutorial14 * Add latest docstring and tutorial changes * Add deprecation warning to old-style imports * Remove stray folder and import Dict into dense.py * Change import path for MLFlowLogger * Add old loggers path to the import path aliases * Fix debug output of convert_ipynb.py * Fix circular import on BaseRetriever * Missed one merge block * re-run tutorial 5 * Fix imports in tutorial 5 * Re-enable squad_to_dpr CLI from the root package and move get_batches_from_generator into document_stores.base * Add latest docstring and tutorial changes * Fix typo in utils __init__ * Fix a few more imports * Fix benchmarks too * New-style imports in test_knowledge_graph * Rollback setup.py * Rollback squad_to_dpr too Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-10-25 15:50:23 +02:00
from haystack.pipelines.base import Pipeline
Calculation of metrics and presentation of eval results (#1760) * retriever metrics added * Add latest docstring and tutorial changes * answer and document level matching metrics implemented * Add latest docstring and tutorial changes * answer related metrics for retriever * basic reader metrics implemented * handle no_answers * fix typing * fix tests * fix tests without sas * first draft for simulated top k * rename sas and f1 columns in dataframe * refactoring of EvaluationResult * Add latest docstring and tutorial changes * more eval tests added * fix sas expected value precision * distinction between ir and qa recall * EvaluationResult.worst_queries() implemented * print_evaluation_report() added * eval report for QA Pipeline improved * dynamic metrics for worst queries calc * Add latest docstring and tutorial changes * method names adjusted * simple test for print_eval_report() added * improved documentation * Add latest docstring and tutorial changes * minor formatting * Add latest docstring and tutorial changes * fix no_answer cases * adjust one docstring * Add latest docstring and tutorial changes * fix no_answer cases for sas * batchmode for sas implemented * fix for retriever metrics if there are only no_answers * fix multilabel tests * improve documentation for pipeline.eval() * streamline multilabel aggregates and docs * Add latest docstring and tutorial changes * fix multilabel tests * unify document_id * add dataframe schema description to EvaluationResult * Add latest docstring and tutorial changes * rename worst_queries to wrong_examples * Add latest docstring and tutorial changes * make query digesting standard pipelines work with pipeline.eval() * Add latest docstring and tutorial changes * tests for multi retriever pipelines added * remove unnecessary import * print_eval_report(): support all pipelines without junctions * Add latest docstring and tutorial changes * fix typos * Add latest docstring and tutorial changes * fix minor simulated_top_k bug and use memory documentstore throughout tests * sas model param description improved * Add latest docstring and tutorial changes * rename recall metrics * Add latest docstring and tutorial changes * fix mean average precision link * Add latest docstring and tutorial changes * adjust sas description docstring * Add latest docstring and tutorial changes * Add latest docstring and tutorial changes Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: Malte Pietsch <malte.pietsch@deepset.ai>
2021-11-30 19:26:34 +01:00
from haystack.pipelines import ExtractiveQAPipeline, DocumentSearchPipeline, FAQPipeline, GenerativeQAPipeline, SearchSummarizationPipeline
from haystack.pipelines.standard_pipelines import RetrieverQuestionGenerationPipeline, TranslationWrapperPipeline
from haystack.schema import Answer, Document, EvaluationResult, Label, MultiLabel, Span
from conftest import DOCS_WITH_EMBEDDINGS
@pytest.mark.parametrize("document_store", ["elasticsearch", "faiss", "memory", "milvus"], indirect=True)
@pytest.mark.parametrize("batch_size", [None, 20])
def test_add_eval_data(document_store, batch_size):
# add eval data (SQUAD format)
document_store.add_eval_data(
filename="samples/squad/small.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
batch_size=batch_size,
)
assert document_store.get_document_count(index="haystack_test_eval_document") == 87
assert document_store.get_label_count(index="haystack_test_feedback") == 1214
# test documents
docs = document_store.get_all_documents(index="haystack_test_eval_document", filters={"name": ["Normans"]})
assert docs[0].meta["name"] == "Normans"
assert len(docs[0].meta.keys()) == 1
# test labels
labels = document_store.get_all_labels(index="haystack_test_feedback")
label = None
for l in labels:
Redesign primitives - `Document`, `Answer`, `Label` (#1398) * first draft / notes on new primitives * wip label / feedback refactor * rename doc.text -> doc.content. add doc.content_type * add datatype for content * remove faq_question_field from ES and weaviate. rename text_field -> content_field in docstores. update tutorials for content field * update converters for . Add warning for empty * renam label.question -> label.query. Allow sorting of Answers. * WIP primitives * update ui/reader for new Answer format * Improve Label. First refactoring of MultiLabel. Adjust eval code * fixed workflow conflict with introducing new one (#1472) * Add latest docstring and tutorial changes * make add_eval_data() work again * fix reader formats. WIP fix _extract_docs_and_labels_from_dict * fix test reader * Add latest docstring and tutorial changes * fix another test case for reader * fix mypy in farm reader.eval() * fix mypy in farm reader.eval() * WIP ORM refactor * Add latest docstring and tutorial changes * fix mypy weaviate * make label and multilabel dataclasses * bump mypy env in CI to python 3.8 * WIP refactor Label ORM * WIP refactor Label ORM * simplify tests for individual doc stores * WIP refactoring markers of tests * test alternative approach for tests with existing parametrization * WIP refactor ORMs * fix skip logic of already parametrized tests * fix weaviate behaviour in tests - not parametrizing it in our general test cases. * Add latest docstring and tutorial changes * fix some tests * remove sql from document_store_types * fix markers for generator and pipeline test * remove inmemory marker * remove unneeded elasticsearch markers * add dataclasses-json dependency. adjust ORM to just store JSON repr * ignore type as dataclasses_json seems to miss functionality here * update readme and contributing.md * update contributing * adjust example * fix duplicate doc handling for custom index * Add latest docstring and tutorial changes * fix some ORM issues. fix get_all_labels_aggregated. * update drop flags where get_all_labels_aggregated() was used before * Add latest docstring and tutorial changes * add to_json(). add + fix tests * fix no_answer handling in label / multilabel * fix duplicate docs in memory doc store. change primary key for sql doc table * fix mypy issues * fix mypy issues * haystack/retriever/base.py * fix test_write_document_meta[elastic] * fix test_elasticsearch_custom_fields * fix test_labels[elastic] * fix crawler * fix converter * fix docx converter * fix preprocessor * fix test_utils * fix tfidf retriever. fix selection of docstore in tests with multiple fixtures / parameterizations * Add latest docstring and tutorial changes * fix crawler test. fix ocrconverter attribute * fix test_elasticsearch_custom_query * fix generator pipeline * fix ocr converter * fix ragenerator * Add latest docstring and tutorial changes * fix test_load_and_save_yaml for elasticsearch * fixes for pipeline tests * fix faq pipeline * fix pipeline tests * Add latest docstring and tutorial changes * fix weaviate * Add latest docstring and tutorial changes * trigger CI * satisfy mypy * Add latest docstring and tutorial changes * satisfy mypy * Add latest docstring and tutorial changes * trigger CI * fix question generation test * fix ray. fix Q-generation * fix translator test * satisfy mypy * wip refactor feedback rest api * fix rest api feedback endpoint * fix doc classifier * remove relation of Labels -> Docs in SQL ORM * fix faiss/milvus tests * fix doc classifier test * fix eval test * fixing eval issues * Add latest docstring and tutorial changes * fix mypy * WIP replace dataclasses-json with manual serialization * Add latest docstring and tutorial changes * revert to dataclass-json serialization for now. remove debug prints. * update docstrings * fix extractor. fix Answer Span init * fix api test * keep meta data of answers in reader.run() * fix meta handling * adress review feedback * Add latest docstring and tutorial changes * make document=None for open domain labels * add import * fix print utils * fix rest api * adress review feedback * Add latest docstring and tutorial changes * fix mypy Co-authored-by: Markus Paff <markuspaff.mp@gmail.com> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-10-13 14:23:23 +02:00
if l.query == "In what country is Normandy located?":
label = l
break
Redesign primitives - `Document`, `Answer`, `Label` (#1398) * first draft / notes on new primitives * wip label / feedback refactor * rename doc.text -> doc.content. add doc.content_type * add datatype for content * remove faq_question_field from ES and weaviate. rename text_field -> content_field in docstores. update tutorials for content field * update converters for . Add warning for empty * renam label.question -> label.query. Allow sorting of Answers. * WIP primitives * update ui/reader for new Answer format * Improve Label. First refactoring of MultiLabel. Adjust eval code * fixed workflow conflict with introducing new one (#1472) * Add latest docstring and tutorial changes * make add_eval_data() work again * fix reader formats. WIP fix _extract_docs_and_labels_from_dict * fix test reader * Add latest docstring and tutorial changes * fix another test case for reader * fix mypy in farm reader.eval() * fix mypy in farm reader.eval() * WIP ORM refactor * Add latest docstring and tutorial changes * fix mypy weaviate * make label and multilabel dataclasses * bump mypy env in CI to python 3.8 * WIP refactor Label ORM * WIP refactor Label ORM * simplify tests for individual doc stores * WIP refactoring markers of tests * test alternative approach for tests with existing parametrization * WIP refactor ORMs * fix skip logic of already parametrized tests * fix weaviate behaviour in tests - not parametrizing it in our general test cases. * Add latest docstring and tutorial changes * fix some tests * remove sql from document_store_types * fix markers for generator and pipeline test * remove inmemory marker * remove unneeded elasticsearch markers * add dataclasses-json dependency. adjust ORM to just store JSON repr * ignore type as dataclasses_json seems to miss functionality here * update readme and contributing.md * update contributing * adjust example * fix duplicate doc handling for custom index * Add latest docstring and tutorial changes * fix some ORM issues. fix get_all_labels_aggregated. * update drop flags where get_all_labels_aggregated() was used before * Add latest docstring and tutorial changes * add to_json(). add + fix tests * fix no_answer handling in label / multilabel * fix duplicate docs in memory doc store. change primary key for sql doc table * fix mypy issues * fix mypy issues * haystack/retriever/base.py * fix test_write_document_meta[elastic] * fix test_elasticsearch_custom_fields * fix test_labels[elastic] * fix crawler * fix converter * fix docx converter * fix preprocessor * fix test_utils * fix tfidf retriever. fix selection of docstore in tests with multiple fixtures / parameterizations * Add latest docstring and tutorial changes * fix crawler test. fix ocrconverter attribute * fix test_elasticsearch_custom_query * fix generator pipeline * fix ocr converter * fix ragenerator * Add latest docstring and tutorial changes * fix test_load_and_save_yaml for elasticsearch * fixes for pipeline tests * fix faq pipeline * fix pipeline tests * Add latest docstring and tutorial changes * fix weaviate * Add latest docstring and tutorial changes * trigger CI * satisfy mypy * Add latest docstring and tutorial changes * satisfy mypy * Add latest docstring and tutorial changes * trigger CI * fix question generation test * fix ray. fix Q-generation * fix translator test * satisfy mypy * wip refactor feedback rest api * fix rest api feedback endpoint * fix doc classifier * remove relation of Labels -> Docs in SQL ORM * fix faiss/milvus tests * fix doc classifier test * fix eval test * fixing eval issues * Add latest docstring and tutorial changes * fix mypy * WIP replace dataclasses-json with manual serialization * Add latest docstring and tutorial changes * revert to dataclass-json serialization for now. remove debug prints. * update docstrings * fix extractor. fix Answer Span init * fix api test * keep meta data of answers in reader.run() * fix meta handling * adress review feedback * Add latest docstring and tutorial changes * make document=None for open domain labels * add import * fix print utils * fix rest api * adress review feedback * Add latest docstring and tutorial changes * fix mypy Co-authored-by: Markus Paff <markuspaff.mp@gmail.com> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-10-13 14:23:23 +02:00
assert label.answer.answer == "France"
assert label.no_answer == False
assert label.is_correct_answer == True
assert label.is_correct_document == True
Redesign primitives - `Document`, `Answer`, `Label` (#1398) * first draft / notes on new primitives * wip label / feedback refactor * rename doc.text -> doc.content. add doc.content_type * add datatype for content * remove faq_question_field from ES and weaviate. rename text_field -> content_field in docstores. update tutorials for content field * update converters for . Add warning for empty * renam label.question -> label.query. Allow sorting of Answers. * WIP primitives * update ui/reader for new Answer format * Improve Label. First refactoring of MultiLabel. Adjust eval code * fixed workflow conflict with introducing new one (#1472) * Add latest docstring and tutorial changes * make add_eval_data() work again * fix reader formats. WIP fix _extract_docs_and_labels_from_dict * fix test reader * Add latest docstring and tutorial changes * fix another test case for reader * fix mypy in farm reader.eval() * fix mypy in farm reader.eval() * WIP ORM refactor * Add latest docstring and tutorial changes * fix mypy weaviate * make label and multilabel dataclasses * bump mypy env in CI to python 3.8 * WIP refactor Label ORM * WIP refactor Label ORM * simplify tests for individual doc stores * WIP refactoring markers of tests * test alternative approach for tests with existing parametrization * WIP refactor ORMs * fix skip logic of already parametrized tests * fix weaviate behaviour in tests - not parametrizing it in our general test cases. * Add latest docstring and tutorial changes * fix some tests * remove sql from document_store_types * fix markers for generator and pipeline test * remove inmemory marker * remove unneeded elasticsearch markers * add dataclasses-json dependency. adjust ORM to just store JSON repr * ignore type as dataclasses_json seems to miss functionality here * update readme and contributing.md * update contributing * adjust example * fix duplicate doc handling for custom index * Add latest docstring and tutorial changes * fix some ORM issues. fix get_all_labels_aggregated. * update drop flags where get_all_labels_aggregated() was used before * Add latest docstring and tutorial changes * add to_json(). add + fix tests * fix no_answer handling in label / multilabel * fix duplicate docs in memory doc store. change primary key for sql doc table * fix mypy issues * fix mypy issues * haystack/retriever/base.py * fix test_write_document_meta[elastic] * fix test_elasticsearch_custom_fields * fix test_labels[elastic] * fix crawler * fix converter * fix docx converter * fix preprocessor * fix test_utils * fix tfidf retriever. fix selection of docstore in tests with multiple fixtures / parameterizations * Add latest docstring and tutorial changes * fix crawler test. fix ocrconverter attribute * fix test_elasticsearch_custom_query * fix generator pipeline * fix ocr converter * fix ragenerator * Add latest docstring and tutorial changes * fix test_load_and_save_yaml for elasticsearch * fixes for pipeline tests * fix faq pipeline * fix pipeline tests * Add latest docstring and tutorial changes * fix weaviate * Add latest docstring and tutorial changes * trigger CI * satisfy mypy * Add latest docstring and tutorial changes * satisfy mypy * Add latest docstring and tutorial changes * trigger CI * fix question generation test * fix ray. fix Q-generation * fix translator test * satisfy mypy * wip refactor feedback rest api * fix rest api feedback endpoint * fix doc classifier * remove relation of Labels -> Docs in SQL ORM * fix faiss/milvus tests * fix doc classifier test * fix eval test * fixing eval issues * Add latest docstring and tutorial changes * fix mypy * WIP replace dataclasses-json with manual serialization * Add latest docstring and tutorial changes * revert to dataclass-json serialization for now. remove debug prints. * update docstrings * fix extractor. fix Answer Span init * fix api test * keep meta data of answers in reader.run() * fix meta handling * adress review feedback * Add latest docstring and tutorial changes * make document=None for open domain labels * add import * fix print utils * fix rest api * adress review feedback * Add latest docstring and tutorial changes * fix mypy Co-authored-by: Markus Paff <markuspaff.mp@gmail.com> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-10-13 14:23:23 +02:00
assert label.query == "In what country is Normandy located?"
assert label.origin == "gold-label"
assert label.answer.offsets_in_document[0].start == 159
assert label.answer.context[label.answer.offsets_in_context[0].start:label.answer.offsets_in_context[0].end] == "France"
assert label.answer.document_id == label.document.id
# check combination
Redesign primitives - `Document`, `Answer`, `Label` (#1398) * first draft / notes on new primitives * wip label / feedback refactor * rename doc.text -> doc.content. add doc.content_type * add datatype for content * remove faq_question_field from ES and weaviate. rename text_field -> content_field in docstores. update tutorials for content field * update converters for . Add warning for empty * renam label.question -> label.query. Allow sorting of Answers. * WIP primitives * update ui/reader for new Answer format * Improve Label. First refactoring of MultiLabel. Adjust eval code * fixed workflow conflict with introducing new one (#1472) * Add latest docstring and tutorial changes * make add_eval_data() work again * fix reader formats. WIP fix _extract_docs_and_labels_from_dict * fix test reader * Add latest docstring and tutorial changes * fix another test case for reader * fix mypy in farm reader.eval() * fix mypy in farm reader.eval() * WIP ORM refactor * Add latest docstring and tutorial changes * fix mypy weaviate * make label and multilabel dataclasses * bump mypy env in CI to python 3.8 * WIP refactor Label ORM * WIP refactor Label ORM * simplify tests for individual doc stores * WIP refactoring markers of tests * test alternative approach for tests with existing parametrization * WIP refactor ORMs * fix skip logic of already parametrized tests * fix weaviate behaviour in tests - not parametrizing it in our general test cases. * Add latest docstring and tutorial changes * fix some tests * remove sql from document_store_types * fix markers for generator and pipeline test * remove inmemory marker * remove unneeded elasticsearch markers * add dataclasses-json dependency. adjust ORM to just store JSON repr * ignore type as dataclasses_json seems to miss functionality here * update readme and contributing.md * update contributing * adjust example * fix duplicate doc handling for custom index * Add latest docstring and tutorial changes * fix some ORM issues. fix get_all_labels_aggregated. * update drop flags where get_all_labels_aggregated() was used before * Add latest docstring and tutorial changes * add to_json(). add + fix tests * fix no_answer handling in label / multilabel * fix duplicate docs in memory doc store. change primary key for sql doc table * fix mypy issues * fix mypy issues * haystack/retriever/base.py * fix test_write_document_meta[elastic] * fix test_elasticsearch_custom_fields * fix test_labels[elastic] * fix crawler * fix converter * fix docx converter * fix preprocessor * fix test_utils * fix tfidf retriever. fix selection of docstore in tests with multiple fixtures / parameterizations * Add latest docstring and tutorial changes * fix crawler test. fix ocrconverter attribute * fix test_elasticsearch_custom_query * fix generator pipeline * fix ocr converter * fix ragenerator * Add latest docstring and tutorial changes * fix test_load_and_save_yaml for elasticsearch * fixes for pipeline tests * fix faq pipeline * fix pipeline tests * Add latest docstring and tutorial changes * fix weaviate * Add latest docstring and tutorial changes * trigger CI * satisfy mypy * Add latest docstring and tutorial changes * satisfy mypy * Add latest docstring and tutorial changes * trigger CI * fix question generation test * fix ray. fix Q-generation * fix translator test * satisfy mypy * wip refactor feedback rest api * fix rest api feedback endpoint * fix doc classifier * remove relation of Labels -> Docs in SQL ORM * fix faiss/milvus tests * fix doc classifier test * fix eval test * fixing eval issues * Add latest docstring and tutorial changes * fix mypy * WIP replace dataclasses-json with manual serialization * Add latest docstring and tutorial changes * revert to dataclass-json serialization for now. remove debug prints. * update docstrings * fix extractor. fix Answer Span init * fix api test * keep meta data of answers in reader.run() * fix meta handling * adress review feedback * Add latest docstring and tutorial changes * make document=None for open domain labels * add import * fix print utils * fix rest api * adress review feedback * Add latest docstring and tutorial changes * fix mypy Co-authored-by: Markus Paff <markuspaff.mp@gmail.com> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-10-13 14:23:23 +02:00
doc = document_store.get_document_by_id(label.document.id, index="haystack_test_eval_document")
start = label.answer.offsets_in_document[0].start
end = label.answer.offsets_in_document[0].end
assert end == start + len(label.answer.answer)
assert doc.content[start:end] == "France"
@pytest.mark.parametrize("document_store", ["elasticsearch", "faiss", "memory", "milvus"], indirect=True)
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
def test_eval_reader(reader, document_store: BaseDocumentStore):
# add eval data (SQUAD format)
document_store.add_eval_data(
filename="samples/squad/tiny.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
)
assert document_store.get_document_count(index="haystack_test_eval_document") == 2
# eval reader
reader_eval_results = reader.eval(
document_store=document_store,
label_index="haystack_test_feedback",
doc_index="haystack_test_eval_document",
device="cpu",
)
assert reader_eval_results["f1"] > 66.65
assert reader_eval_results["f1"] < 66.67
assert reader_eval_results["EM"] == 50
assert reader_eval_results["top_n_accuracy"] == 100.0
[RAG] Integrate "Retrieval-Augmented Generation" with Haystack (#484) * Adding dummy generator implementation * Adding tutorial to try the model * Committing current non working code * Committing current update where we need to call generate function directly and need to convert embedding to tensor way * Addressing review comments. * Refactoring finder, and implementing rag_generator class. * Refined the implementation of RAGGenerator and now it is in clean shape * Renaming RAGGenerator to RAGenerator * Reverting change from finder.py and addressing review comments * Remove support for RagSequenceForGeneration * Utilizing embed_passage function from DensePassageRetriever * Adding sample test data to verify generator output * Updating testing script * Updating testing script * Fixing bug related to top_k * Updating latest farm dependency * Comment out farm dependency * Reverting changes from TransformersReader * Adding transformers dataset to compare transformers and haystack generator implementation * Using generator_encoder instead of question_encoder to generate context_input_ids * Adding workaround to install FARM dependency from master branch * Removing unnecessary changes * Fixing generator test * Removing transformers datasets * Fixing generator test * Some cleanup and updating TODO comments * Adding tutorial notebook * Updating tutorials with comments * Explicitly passing token model in RAG test * Addressing review comments * Fixing notebook * Refactoring tests to reduce memory footprint * Split generator tests in separate ci step and before running it reclaim memory by terminating containers * Moving tika dependent test to separate dir * Remove unwanted code * Brining reader under session scope * Farm is now session object hence restoring changes from default value * Updating assert for pdf converter * Dummy commit to trigger CI flow * REducing memory footprint required for generator tests * Fixing mypy issues * Marking test with tika and elasticsearch markers. Reverting changes in CI and pytest splits * reducing changes * Fixing CI * changing elastic search ci * Fixing test error * Disabling return of embedding * Marking generator test as well * Refactoring tutorials * Increasing ES memory to 750M * Trying another fix for ES CI * Reverting CI changes * Splitting tests in CI * Generator and non-generator markers split * Adding pytest.ini to add markers and enable strict-markers option * Reducing elastic search container memory * Simplifying generator test by using documents with embedding directly * Bump up farm to 0.5.0
2020-10-30 18:06:02 +01:00
@pytest.mark.elasticsearch
@pytest.mark.parametrize("document_store", ["elasticsearch"], indirect=True)
@pytest.mark.parametrize("open_domain", [True, False])
@pytest.mark.parametrize("retriever", ["elasticsearch"], indirect=True)
def test_eval_elastic_retriever(document_store: BaseDocumentStore, open_domain, retriever):
# add eval data (SQUAD format)
document_store.add_eval_data(
filename="samples/squad/tiny.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
)
assert document_store.get_document_count(index="haystack_test_eval_document") == 2
# eval retriever
results = retriever.eval(
top_k=1, label_index="haystack_test_feedback", doc_index="haystack_test_eval_document", open_domain=open_domain
)
assert results["recall"] == 1.0
assert results["mrr"] == 1.0
if not open_domain:
assert results["map"] == 1.0
# TODO simplify with a mock retriever and make it independent of elasticsearch documentstore
@pytest.mark.elasticsearch
@pytest.mark.parametrize("document_store", ["elasticsearch"], indirect=True)
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
@pytest.mark.parametrize("retriever", ["elasticsearch"], indirect=True)
def test_eval_pipeline(document_store: BaseDocumentStore, reader, retriever):
# add eval data (SQUAD format)
document_store.add_eval_data(
filename="samples/squad/tiny.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
)
Redesign primitives - `Document`, `Answer`, `Label` (#1398) * first draft / notes on new primitives * wip label / feedback refactor * rename doc.text -> doc.content. add doc.content_type * add datatype for content * remove faq_question_field from ES and weaviate. rename text_field -> content_field in docstores. update tutorials for content field * update converters for . Add warning for empty * renam label.question -> label.query. Allow sorting of Answers. * WIP primitives * update ui/reader for new Answer format * Improve Label. First refactoring of MultiLabel. Adjust eval code * fixed workflow conflict with introducing new one (#1472) * Add latest docstring and tutorial changes * make add_eval_data() work again * fix reader formats. WIP fix _extract_docs_and_labels_from_dict * fix test reader * Add latest docstring and tutorial changes * fix another test case for reader * fix mypy in farm reader.eval() * fix mypy in farm reader.eval() * WIP ORM refactor * Add latest docstring and tutorial changes * fix mypy weaviate * make label and multilabel dataclasses * bump mypy env in CI to python 3.8 * WIP refactor Label ORM * WIP refactor Label ORM * simplify tests for individual doc stores * WIP refactoring markers of tests * test alternative approach for tests with existing parametrization * WIP refactor ORMs * fix skip logic of already parametrized tests * fix weaviate behaviour in tests - not parametrizing it in our general test cases. * Add latest docstring and tutorial changes * fix some tests * remove sql from document_store_types * fix markers for generator and pipeline test * remove inmemory marker * remove unneeded elasticsearch markers * add dataclasses-json dependency. adjust ORM to just store JSON repr * ignore type as dataclasses_json seems to miss functionality here * update readme and contributing.md * update contributing * adjust example * fix duplicate doc handling for custom index * Add latest docstring and tutorial changes * fix some ORM issues. fix get_all_labels_aggregated. * update drop flags where get_all_labels_aggregated() was used before * Add latest docstring and tutorial changes * add to_json(). add + fix tests * fix no_answer handling in label / multilabel * fix duplicate docs in memory doc store. change primary key for sql doc table * fix mypy issues * fix mypy issues * haystack/retriever/base.py * fix test_write_document_meta[elastic] * fix test_elasticsearch_custom_fields * fix test_labels[elastic] * fix crawler * fix converter * fix docx converter * fix preprocessor * fix test_utils * fix tfidf retriever. fix selection of docstore in tests with multiple fixtures / parameterizations * Add latest docstring and tutorial changes * fix crawler test. fix ocrconverter attribute * fix test_elasticsearch_custom_query * fix generator pipeline * fix ocr converter * fix ragenerator * Add latest docstring and tutorial changes * fix test_load_and_save_yaml for elasticsearch * fixes for pipeline tests * fix faq pipeline * fix pipeline tests * Add latest docstring and tutorial changes * fix weaviate * Add latest docstring and tutorial changes * trigger CI * satisfy mypy * Add latest docstring and tutorial changes * satisfy mypy * Add latest docstring and tutorial changes * trigger CI * fix question generation test * fix ray. fix Q-generation * fix translator test * satisfy mypy * wip refactor feedback rest api * fix rest api feedback endpoint * fix doc classifier * remove relation of Labels -> Docs in SQL ORM * fix faiss/milvus tests * fix doc classifier test * fix eval test * fixing eval issues * Add latest docstring and tutorial changes * fix mypy * WIP replace dataclasses-json with manual serialization * Add latest docstring and tutorial changes * revert to dataclass-json serialization for now. remove debug prints. * update docstrings * fix extractor. fix Answer Span init * fix api test * keep meta data of answers in reader.run() * fix meta handling * adress review feedback * Add latest docstring and tutorial changes * make document=None for open domain labels * add import * fix print utils * fix rest api * adress review feedback * Add latest docstring and tutorial changes * fix mypy Co-authored-by: Markus Paff <markuspaff.mp@gmail.com> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-10-13 14:23:23 +02:00
labels = document_store.get_all_labels_aggregated(index="haystack_test_feedback",
drop_negative_labels=True,
drop_no_answers=False)
eval_retriever = EvalDocuments()
eval_reader = EvalAnswers(sas_model="sentence-transformers/paraphrase-MiniLM-L3-v2",debug=True)
eval_reader_cross = EvalAnswers(sas_model="cross-encoder/stsb-TinyBERT-L-4",debug=True)
eval_reader_vanila = EvalAnswers()
assert document_store.get_document_count(index="haystack_test_eval_document") == 2
p = Pipeline()
p.add_node(component=retriever, name="ESRetriever", inputs=["Query"])
p.add_node(component=eval_retriever, name="EvalDocuments", inputs=["ESRetriever"])
p.add_node(component=reader, name="QAReader", inputs=["EvalDocuments"])
p.add_node(component=eval_reader, name="EvalAnswers", inputs=["QAReader"])
p.add_node(component=eval_reader_cross, name="EvalAnswers_cross", inputs=["QAReader"])
p.add_node(component=eval_reader_vanila, name="EvalAnswers_vanilla", inputs=["QAReader"])
for l in labels:
res = p.run(
Redesign primitives - `Document`, `Answer`, `Label` (#1398) * first draft / notes on new primitives * wip label / feedback refactor * rename doc.text -> doc.content. add doc.content_type * add datatype for content * remove faq_question_field from ES and weaviate. rename text_field -> content_field in docstores. update tutorials for content field * update converters for . Add warning for empty * renam label.question -> label.query. Allow sorting of Answers. * WIP primitives * update ui/reader for new Answer format * Improve Label. First refactoring of MultiLabel. Adjust eval code * fixed workflow conflict with introducing new one (#1472) * Add latest docstring and tutorial changes * make add_eval_data() work again * fix reader formats. WIP fix _extract_docs_and_labels_from_dict * fix test reader * Add latest docstring and tutorial changes * fix another test case for reader * fix mypy in farm reader.eval() * fix mypy in farm reader.eval() * WIP ORM refactor * Add latest docstring and tutorial changes * fix mypy weaviate * make label and multilabel dataclasses * bump mypy env in CI to python 3.8 * WIP refactor Label ORM * WIP refactor Label ORM * simplify tests for individual doc stores * WIP refactoring markers of tests * test alternative approach for tests with existing parametrization * WIP refactor ORMs * fix skip logic of already parametrized tests * fix weaviate behaviour in tests - not parametrizing it in our general test cases. * Add latest docstring and tutorial changes * fix some tests * remove sql from document_store_types * fix markers for generator and pipeline test * remove inmemory marker * remove unneeded elasticsearch markers * add dataclasses-json dependency. adjust ORM to just store JSON repr * ignore type as dataclasses_json seems to miss functionality here * update readme and contributing.md * update contributing * adjust example * fix duplicate doc handling for custom index * Add latest docstring and tutorial changes * fix some ORM issues. fix get_all_labels_aggregated. * update drop flags where get_all_labels_aggregated() was used before * Add latest docstring and tutorial changes * add to_json(). add + fix tests * fix no_answer handling in label / multilabel * fix duplicate docs in memory doc store. change primary key for sql doc table * fix mypy issues * fix mypy issues * haystack/retriever/base.py * fix test_write_document_meta[elastic] * fix test_elasticsearch_custom_fields * fix test_labels[elastic] * fix crawler * fix converter * fix docx converter * fix preprocessor * fix test_utils * fix tfidf retriever. fix selection of docstore in tests with multiple fixtures / parameterizations * Add latest docstring and tutorial changes * fix crawler test. fix ocrconverter attribute * fix test_elasticsearch_custom_query * fix generator pipeline * fix ocr converter * fix ragenerator * Add latest docstring and tutorial changes * fix test_load_and_save_yaml for elasticsearch * fixes for pipeline tests * fix faq pipeline * fix pipeline tests * Add latest docstring and tutorial changes * fix weaviate * Add latest docstring and tutorial changes * trigger CI * satisfy mypy * Add latest docstring and tutorial changes * satisfy mypy * Add latest docstring and tutorial changes * trigger CI * fix question generation test * fix ray. fix Q-generation * fix translator test * satisfy mypy * wip refactor feedback rest api * fix rest api feedback endpoint * fix doc classifier * remove relation of Labels -> Docs in SQL ORM * fix faiss/milvus tests * fix doc classifier test * fix eval test * fixing eval issues * Add latest docstring and tutorial changes * fix mypy * WIP replace dataclasses-json with manual serialization * Add latest docstring and tutorial changes * revert to dataclass-json serialization for now. remove debug prints. * update docstrings * fix extractor. fix Answer Span init * fix api test * keep meta data of answers in reader.run() * fix meta handling * adress review feedback * Add latest docstring and tutorial changes * make document=None for open domain labels * add import * fix print utils * fix rest api * adress review feedback * Add latest docstring and tutorial changes * fix mypy Co-authored-by: Markus Paff <markuspaff.mp@gmail.com> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-10-13 14:23:23 +02:00
query=l.query,
labels=l,
params={"ESRetriever":{"index": "haystack_test_eval_document"}}
)
assert eval_retriever.recall == 1.0
assert round(eval_reader.top_k_f1, 4) == 0.8333
assert eval_reader.top_k_em == 0.5
assert round(eval_reader.top_k_sas, 3) == 0.800
assert round(eval_reader_cross.top_k_sas, 3) == 0.671
assert eval_reader.top_k_em == eval_reader_vanila.top_k_em
@pytest.mark.parametrize("document_store", ["elasticsearch", "faiss", "memory", "milvus"], indirect=True)
def test_eval_data_split_word(document_store):
# splitting by word
preprocessor = PreProcessor(
clean_empty_lines=False,
clean_whitespace=False,
clean_header_footer=False,
split_by="word",
split_length=4,
split_overlap=0,
split_respect_sentence_boundary=False,
)
document_store.add_eval_data(
filename="samples/squad/tiny.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
preprocessor=preprocessor,
)
labels = document_store.get_all_labels_aggregated(index="haystack_test_feedback")
docs = document_store.get_all_documents(index="haystack_test_eval_document")
assert len(docs) == 5
Redesign primitives - `Document`, `Answer`, `Label` (#1398) * first draft / notes on new primitives * wip label / feedback refactor * rename doc.text -> doc.content. add doc.content_type * add datatype for content * remove faq_question_field from ES and weaviate. rename text_field -> content_field in docstores. update tutorials for content field * update converters for . Add warning for empty * renam label.question -> label.query. Allow sorting of Answers. * WIP primitives * update ui/reader for new Answer format * Improve Label. First refactoring of MultiLabel. Adjust eval code * fixed workflow conflict with introducing new one (#1472) * Add latest docstring and tutorial changes * make add_eval_data() work again * fix reader formats. WIP fix _extract_docs_and_labels_from_dict * fix test reader * Add latest docstring and tutorial changes * fix another test case for reader * fix mypy in farm reader.eval() * fix mypy in farm reader.eval() * WIP ORM refactor * Add latest docstring and tutorial changes * fix mypy weaviate * make label and multilabel dataclasses * bump mypy env in CI to python 3.8 * WIP refactor Label ORM * WIP refactor Label ORM * simplify tests for individual doc stores * WIP refactoring markers of tests * test alternative approach for tests with existing parametrization * WIP refactor ORMs * fix skip logic of already parametrized tests * fix weaviate behaviour in tests - not parametrizing it in our general test cases. * Add latest docstring and tutorial changes * fix some tests * remove sql from document_store_types * fix markers for generator and pipeline test * remove inmemory marker * remove unneeded elasticsearch markers * add dataclasses-json dependency. adjust ORM to just store JSON repr * ignore type as dataclasses_json seems to miss functionality here * update readme and contributing.md * update contributing * adjust example * fix duplicate doc handling for custom index * Add latest docstring and tutorial changes * fix some ORM issues. fix get_all_labels_aggregated. * update drop flags where get_all_labels_aggregated() was used before * Add latest docstring and tutorial changes * add to_json(). add + fix tests * fix no_answer handling in label / multilabel * fix duplicate docs in memory doc store. change primary key for sql doc table * fix mypy issues * fix mypy issues * haystack/retriever/base.py * fix test_write_document_meta[elastic] * fix test_elasticsearch_custom_fields * fix test_labels[elastic] * fix crawler * fix converter * fix docx converter * fix preprocessor * fix test_utils * fix tfidf retriever. fix selection of docstore in tests with multiple fixtures / parameterizations * Add latest docstring and tutorial changes * fix crawler test. fix ocrconverter attribute * fix test_elasticsearch_custom_query * fix generator pipeline * fix ocr converter * fix ragenerator * Add latest docstring and tutorial changes * fix test_load_and_save_yaml for elasticsearch * fixes for pipeline tests * fix faq pipeline * fix pipeline tests * Add latest docstring and tutorial changes * fix weaviate * Add latest docstring and tutorial changes * trigger CI * satisfy mypy * Add latest docstring and tutorial changes * satisfy mypy * Add latest docstring and tutorial changes * trigger CI * fix question generation test * fix ray. fix Q-generation * fix translator test * satisfy mypy * wip refactor feedback rest api * fix rest api feedback endpoint * fix doc classifier * remove relation of Labels -> Docs in SQL ORM * fix faiss/milvus tests * fix doc classifier test * fix eval test * fixing eval issues * Add latest docstring and tutorial changes * fix mypy * WIP replace dataclasses-json with manual serialization * Add latest docstring and tutorial changes * revert to dataclass-json serialization for now. remove debug prints. * update docstrings * fix extractor. fix Answer Span init * fix api test * keep meta data of answers in reader.run() * fix meta handling * adress review feedback * Add latest docstring and tutorial changes * make document=None for open domain labels * add import * fix print utils * fix rest api * adress review feedback * Add latest docstring and tutorial changes * fix mypy Co-authored-by: Markus Paff <markuspaff.mp@gmail.com> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-10-13 14:23:23 +02:00
assert len(set(labels[0].document_ids)) == 2
@pytest.mark.parametrize("document_store", ["elasticsearch", "faiss", "memory", "milvus"], indirect=True)
def test_eval_data_split_passage(document_store):
# splitting by passage
preprocessor = PreProcessor(
clean_empty_lines=False,
clean_whitespace=False,
clean_header_footer=False,
split_by="passage",
split_length=1,
split_overlap=0,
split_respect_sentence_boundary=False
)
document_store.add_eval_data(
filename="samples/squad/tiny_passages.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
preprocessor=preprocessor,
)
docs = document_store.get_all_documents(index="haystack_test_eval_document")
assert len(docs) == 2
Calculation of metrics and presentation of eval results (#1760) * retriever metrics added * Add latest docstring and tutorial changes * answer and document level matching metrics implemented * Add latest docstring and tutorial changes * answer related metrics for retriever * basic reader metrics implemented * handle no_answers * fix typing * fix tests * fix tests without sas * first draft for simulated top k * rename sas and f1 columns in dataframe * refactoring of EvaluationResult * Add latest docstring and tutorial changes * more eval tests added * fix sas expected value precision * distinction between ir and qa recall * EvaluationResult.worst_queries() implemented * print_evaluation_report() added * eval report for QA Pipeline improved * dynamic metrics for worst queries calc * Add latest docstring and tutorial changes * method names adjusted * simple test for print_eval_report() added * improved documentation * Add latest docstring and tutorial changes * minor formatting * Add latest docstring and tutorial changes * fix no_answer cases * adjust one docstring * Add latest docstring and tutorial changes * fix no_answer cases for sas * batchmode for sas implemented * fix for retriever metrics if there are only no_answers * fix multilabel tests * improve documentation for pipeline.eval() * streamline multilabel aggregates and docs * Add latest docstring and tutorial changes * fix multilabel tests * unify document_id * add dataframe schema description to EvaluationResult * Add latest docstring and tutorial changes * rename worst_queries to wrong_examples * Add latest docstring and tutorial changes * make query digesting standard pipelines work with pipeline.eval() * Add latest docstring and tutorial changes * tests for multi retriever pipelines added * remove unnecessary import * print_eval_report(): support all pipelines without junctions * Add latest docstring and tutorial changes * fix typos * Add latest docstring and tutorial changes * fix minor simulated_top_k bug and use memory documentstore throughout tests * sas model param description improved * Add latest docstring and tutorial changes * rename recall metrics * Add latest docstring and tutorial changes * fix mean average precision link * Add latest docstring and tutorial changes * adjust sas description docstring * Add latest docstring and tutorial changes * Add latest docstring and tutorial changes Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: Malte Pietsch <malte.pietsch@deepset.ai>
2021-11-30 19:26:34 +01:00
assert len(docs[1].content) == 56
EVAL_QUERIES = ["Who lives in Berlin?", "Who lives in Munich?"]
EVAL_LABELS = [
MultiLabel(labels=[Label(query="Who lives in Berlin?", answer=Answer(answer="Carla", offsets_in_context=[Span(11, 16)]),
document=Document(id='a0747b83aea0b60c4b114b15476dd32d', content_type="text", content='My name is Carla and I live in Berlin'),
is_correct_answer=True, is_correct_document=True, origin="gold-label")]),
MultiLabel(labels=[Label(query="Who lives in Munich?", answer=Answer(answer="Carla", offsets_in_context=[Span(11, 16)]),
document=Document(id='something_else', content_type="text", content='My name is Carla and I live in Munich'),
is_correct_answer=True, is_correct_document=True, origin="gold-label")])
]
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
def test_extractive_qa_eval(reader, retriever_with_docs, tmp_path):
queries = EVAL_QUERIES[:1]
labels = EVAL_LABELS[:1]
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
eval_result = pipeline.eval(
queries=queries,
labels=labels,
params={"Retriever": {"top_k": 5}},
)
metrics = eval_result.calculate_metrics()
reader_result = eval_result["Reader"]
retriever_result = eval_result["Retriever"]
assert reader_result[reader_result['rank'] == 1]["answer"].iloc[0] in reader_result[reader_result['rank'] == 1]["gold_answers"].iloc[0]
assert retriever_result[retriever_result['rank'] == 1]["document_id"].iloc[0] in retriever_result[retriever_result['rank'] == 1]["gold_document_ids"].iloc[0]
assert metrics["Reader"]["exact_match"] == 1.0
assert metrics["Reader"]["f1"] == 1.0
assert metrics["Retriever"]["mrr"] == 1.0
assert metrics["Retriever"]["recall_multi_hit"] == 1.0
assert metrics["Retriever"]["recall_single_hit"] == 1.0
assert metrics["Retriever"]["precision"] == 1.0/3
assert metrics["Retriever"]["map"] == 1.0
eval_result.save(tmp_path)
saved_eval_result = EvaluationResult.load(tmp_path)
metrics = saved_eval_result.calculate_metrics()
assert reader_result[reader_result['rank'] == 1]["answer"].iloc[0] in reader_result[reader_result['rank'] == 1]["gold_answers"].iloc[0]
assert retriever_result[retriever_result['rank'] == 1]["document_id"].iloc[0] in retriever_result[retriever_result['rank'] == 1]["gold_document_ids"].iloc[0]
assert metrics["Reader"]["exact_match"] == 1.0
assert metrics["Reader"]["f1"] == 1.0
assert metrics["Retriever"]["mrr"] == 1.0
assert metrics["Retriever"]["recall_multi_hit"] == 1.0
assert metrics["Retriever"]["recall_single_hit"] == 1.0
assert metrics["Retriever"]["precision"] == 1.0/3
assert metrics["Retriever"]["map"] == 1.0
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
def test_extractive_qa_eval_multiple_queries(reader, retriever_with_docs, tmp_path):
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval(
queries=EVAL_QUERIES,
labels=EVAL_LABELS,
params={"Retriever": {"top_k": 5}}
)
metrics = eval_result.calculate_metrics()
reader_result = eval_result["Reader"]
retriever_result = eval_result["Retriever"]
reader_berlin = reader_result[reader_result['query'] == "Who lives in Berlin?"]
reader_munich = reader_result[reader_result['query'] == "Who lives in Munich?"]
retriever_berlin = retriever_result[retriever_result['query'] == "Who lives in Berlin?"]
retriever_munich = retriever_result[retriever_result['query'] == "Who lives in Munich?"]
assert reader_berlin[reader_berlin['rank'] == 1]["answer"].iloc[0] in reader_berlin[reader_berlin['rank'] == 1]["gold_answers"].iloc[0]
assert retriever_berlin[retriever_berlin['rank'] == 1]["document_id"].iloc[0] in retriever_berlin[retriever_berlin['rank'] == 1]["gold_document_ids"].iloc[0]
assert reader_munich[reader_munich['rank'] == 1]["answer"].iloc[0] not in reader_munich[reader_munich['rank'] == 1]["gold_answers"].iloc[0]
assert retriever_munich[retriever_munich['rank'] == 1]["document_id"].iloc[0] not in retriever_munich[retriever_munich['rank'] == 1]["gold_document_ids"].iloc[0]
assert metrics["Reader"]["exact_match"] == 1.0
assert metrics["Reader"]["f1"] == 1.0
assert metrics["Retriever"]["mrr"] == 0.5
assert metrics["Retriever"]["map"] == 0.5
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
assert metrics["Retriever"]["recall_single_hit"] == 0.5
assert metrics["Retriever"]["precision"] == 1.0/6
eval_result.save(tmp_path)
saved_eval_result = EvaluationResult.load(tmp_path)
metrics = saved_eval_result.calculate_metrics()
assert reader_berlin[reader_berlin['rank'] == 1]["answer"].iloc[0] in reader_berlin[reader_berlin['rank'] == 1]["gold_answers"].iloc[0]
assert retriever_berlin[retriever_berlin['rank'] == 1]["document_id"].iloc[0] in retriever_berlin[retriever_berlin['rank'] == 1]["gold_document_ids"].iloc[0]
assert reader_munich[reader_munich['rank'] == 1]["answer"].iloc[0] not in reader_munich[reader_munich['rank'] == 1]["gold_answers"].iloc[0]
assert retriever_munich[retriever_munich['rank'] == 1]["document_id"].iloc[0] not in retriever_munich[retriever_munich['rank'] == 1]["gold_document_ids"].iloc[0]
assert metrics["Reader"]["exact_match"] == 1.0
assert metrics["Reader"]["f1"] == 1.0
assert metrics["Retriever"]["mrr"] == 0.5
assert metrics["Retriever"]["map"] == 0.5
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
assert metrics["Retriever"]["recall_single_hit"] == 0.5
assert metrics["Retriever"]["precision"] == 1.0/6
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
def test_extractive_qa_eval_sas(reader, retriever_with_docs):
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval(
queries=EVAL_QUERIES,
labels=EVAL_LABELS,
params={"Retriever": {"top_k": 5}},
sas_model_name_or_path="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
)
metrics = eval_result.calculate_metrics()
assert metrics["Reader"]["exact_match"] == 1.0
assert metrics["Reader"]["f1"] == 1.0
assert metrics["Retriever"]["mrr"] == 0.5
assert metrics["Retriever"]["map"] == 0.5
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
assert metrics["Retriever"]["recall_single_hit"] == 0.5
assert metrics["Retriever"]["precision"] == 1.0/6
assert "sas" in metrics["Reader"]
assert metrics["Reader"]["sas"] == pytest.approx(1.0)
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
def test_extractive_qa_eval_doc_relevance_col(reader, retriever_with_docs):
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval(
queries=EVAL_QUERIES,
labels=EVAL_LABELS,
params={"Retriever": {"top_k": 5}},
)
metrics = eval_result.calculate_metrics(doc_relevance_col="gold_id_or_answer_match")
assert metrics["Retriever"]["mrr"] == 1.0
assert metrics["Retriever"]["map"] == 0.75
assert metrics["Retriever"]["recall_multi_hit"] == 0.75
assert metrics["Retriever"]["recall_single_hit"] == 1.0
assert metrics["Retriever"]["precision"] == 1.0/3
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
def test_extractive_qa_eval_simulated_top_k_reader(reader, retriever_with_docs):
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval(
queries=EVAL_QUERIES,
labels=EVAL_LABELS,
params={"Retriever": {"top_k": 5}},
sas_model_name_or_path="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
)
metrics_top_1 = eval_result.calculate_metrics(simulated_top_k_reader=1)
assert metrics_top_1["Reader"]["exact_match"] == 0.5
assert metrics_top_1["Reader"]["f1"] == 0.5
assert metrics_top_1["Reader"]["sas"] == pytest.approx(0.6208, abs=1e-4)
assert metrics_top_1["Retriever"]["mrr"] == 0.5
assert metrics_top_1["Retriever"]["map"] == 0.5
assert metrics_top_1["Retriever"]["recall_multi_hit"] == 0.5
assert metrics_top_1["Retriever"]["recall_single_hit"] == 0.5
assert metrics_top_1["Retriever"]["precision"] == 1.0/6
metrics_top_2 = eval_result.calculate_metrics(simulated_top_k_reader=2)
assert metrics_top_2["Reader"]["exact_match"] == 0.5
assert metrics_top_2["Reader"]["f1"] == 0.5
assert metrics_top_2["Reader"]["sas"] == pytest.approx(0.7192, abs=1e-4)
assert metrics_top_2["Retriever"]["mrr"] == 0.5
assert metrics_top_2["Retriever"]["map"] == 0.5
assert metrics_top_2["Retriever"]["recall_multi_hit"] == 0.5
assert metrics_top_2["Retriever"]["recall_single_hit"] == 0.5
assert metrics_top_2["Retriever"]["precision"] == 1.0/6
metrics_top_3 = eval_result.calculate_metrics(simulated_top_k_reader=3)
assert metrics_top_3["Reader"]["exact_match"] == 1.0
assert metrics_top_3["Reader"]["f1"] == 1.0
assert metrics_top_3["Reader"]["sas"] == pytest.approx(1.0)
assert metrics_top_3["Retriever"]["mrr"] == 0.5
assert metrics_top_3["Retriever"]["map"] == 0.5
assert metrics_top_3["Retriever"]["recall_multi_hit"] == 0.5
assert metrics_top_3["Retriever"]["recall_single_hit"] == 0.5
assert metrics_top_3["Retriever"]["precision"] == 1.0/6
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
def test_extractive_qa_eval_simulated_top_k_retriever(reader, retriever_with_docs):
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval(
queries=EVAL_QUERIES,
labels=EVAL_LABELS,
params={"Retriever": {"top_k": 5}}
)
metrics_top_10 = eval_result.calculate_metrics()
assert metrics_top_10["Reader"]["exact_match"] == 1.0
assert metrics_top_10["Reader"]["f1"] == 1.0
assert metrics_top_10["Retriever"]["mrr"] == 0.5
assert metrics_top_10["Retriever"]["map"] == 0.5
assert metrics_top_10["Retriever"]["recall_multi_hit"] == 0.5
assert metrics_top_10["Retriever"]["recall_single_hit"] == 0.5
assert metrics_top_10["Retriever"]["precision"] == 1.0/6
metrics_top_1 = eval_result.calculate_metrics(simulated_top_k_retriever=1)
assert metrics_top_1["Reader"]["exact_match"] == 1.0
assert metrics_top_1["Reader"]["f1"] == 1.0
assert metrics_top_1["Retriever"]["mrr"] == 0.5
assert metrics_top_1["Retriever"]["map"] == 0.5
assert metrics_top_1["Retriever"]["recall_multi_hit"] == 0.5
assert metrics_top_1["Retriever"]["recall_single_hit"] == 0.5
assert metrics_top_1["Retriever"]["precision"] == 0.5
metrics_top_2 = eval_result.calculate_metrics(simulated_top_k_retriever=2)
assert metrics_top_2["Reader"]["exact_match"] == 1.0
assert metrics_top_2["Reader"]["f1"] == 1.0
assert metrics_top_2["Retriever"]["mrr"] == 0.5
assert metrics_top_2["Retriever"]["map"] == 0.5
assert metrics_top_2["Retriever"]["recall_multi_hit"] == 0.5
assert metrics_top_2["Retriever"]["recall_single_hit"] == 0.5
assert metrics_top_2["Retriever"]["precision"] == 0.25
metrics_top_3 = eval_result.calculate_metrics(simulated_top_k_retriever=3)
assert metrics_top_3["Reader"]["exact_match"] == 1.0
assert metrics_top_3["Reader"]["f1"] == 1.0
assert metrics_top_3["Retriever"]["mrr"] == 0.5
assert metrics_top_3["Retriever"]["map"] == 0.5
assert metrics_top_3["Retriever"]["recall_multi_hit"] == 0.5
assert metrics_top_3["Retriever"]["recall_single_hit"] == 0.5
assert metrics_top_3["Retriever"]["precision"] == 1.0/6
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
def test_extractive_qa_eval_simulated_top_k_reader_and_retriever(reader, retriever_with_docs):
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval(
queries=EVAL_QUERIES,
labels=EVAL_LABELS,
params={"Retriever": {"top_k": 10}}
)
metrics_top_10 = eval_result.calculate_metrics(simulated_top_k_reader=1)
assert metrics_top_10["Reader"]["exact_match"] == 0.5
assert metrics_top_10["Reader"]["f1"] == 0.5
assert metrics_top_10["Retriever"]["mrr"] == 0.5
assert metrics_top_10["Retriever"]["map"] == 0.5
assert metrics_top_10["Retriever"]["recall_multi_hit"] == 0.5
assert metrics_top_10["Retriever"]["recall_single_hit"] == 0.5
assert metrics_top_10["Retriever"]["precision"] == 1.0/6
metrics_top_1 = eval_result.calculate_metrics(simulated_top_k_reader=1, simulated_top_k_retriever=1)
assert metrics_top_1["Reader"]["exact_match"] == 0.5
assert metrics_top_1["Reader"]["f1"] == 0.5
assert metrics_top_1["Retriever"]["mrr"] == 0.5
assert metrics_top_1["Retriever"]["map"] == 0.5
assert metrics_top_1["Retriever"]["recall_multi_hit"] == 0.5
assert metrics_top_1["Retriever"]["recall_single_hit"] == 0.5
assert metrics_top_1["Retriever"]["precision"] == 0.5
metrics_top_2 = eval_result.calculate_metrics(simulated_top_k_reader=1, simulated_top_k_retriever=2)
assert metrics_top_2["Reader"]["exact_match"] == 0.5
assert metrics_top_2["Reader"]["f1"] == 0.5
assert metrics_top_2["Retriever"]["mrr"] == 0.5
assert metrics_top_2["Retriever"]["map"] == 0.5
assert metrics_top_2["Retriever"]["recall_multi_hit"] == 0.5
assert metrics_top_2["Retriever"]["recall_single_hit"] == 0.5
assert metrics_top_2["Retriever"]["precision"] == 0.25
metrics_top_3 = eval_result.calculate_metrics(simulated_top_k_reader=1, simulated_top_k_retriever=3)
assert metrics_top_3["Reader"]["exact_match"] == 0.5
assert metrics_top_3["Reader"]["f1"] == 0.5
assert metrics_top_3["Retriever"]["mrr"] == 0.5
assert metrics_top_3["Retriever"]["map"] == 0.5
assert metrics_top_3["Retriever"]["recall_multi_hit"] == 0.5
assert metrics_top_3["Retriever"]["recall_single_hit"] == 0.5
assert metrics_top_3["Retriever"]["precision"] == 1.0/6
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
def test_extractive_qa_eval_wrong_examples(reader, retriever_with_docs):
queries = ["Who lives in Berlin?", "Who lives in Munich?"]
labels = [
MultiLabel(labels=[Label(query="Who lives in Berlin?", answer=Answer(answer="Carla", offsets_in_context=[Span(11, 16)]),
document=Document(id='a0747b83aea0b60c4b114b15476dd32d', content_type="text", content='My name is Carla and I live in Berlin'),
is_correct_answer=True, is_correct_document=True, origin="gold-label")]),
MultiLabel(labels=[Label(query="Who lives in Munich?", answer=Answer(answer="Pete", offsets_in_context=[Span(11, 16)]),
document=Document(id='something_else', content_type="text", content='My name is Pete and I live in Munich'),
is_correct_answer=True, is_correct_document=True, origin="gold-label")])
]
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval(
queries=queries,
labels=labels,
params={"Retriever": {"top_k": 5}},
)
wrongs_retriever = eval_result.wrong_examples(node="Retriever", n=1)
wrongs_reader = eval_result.wrong_examples(node="Reader", n=1)
assert len(wrongs_retriever) == 1
assert len(wrongs_reader) == 1
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
def test_extractive_qa_print_eval_report(reader, retriever_with_docs):
queries = ["Who lives in Berlin?", "Who lives in Munich?"]
labels = [
MultiLabel(labels=[Label(query="Who lives in Berlin?", answer=Answer(answer="Carla", offsets_in_context=[Span(11, 16)]),
document=Document(id='a0747b83aea0b60c4b114b15476dd32d', content_type="text", content='My name is Carla and I live in Berlin'),
is_correct_answer=True, is_correct_document=True, origin="gold-label")]),
MultiLabel(labels=[Label(query="Who lives in Munich?", answer=Answer(answer="Pete", offsets_in_context=[Span(11, 16)]),
document=Document(id='something_else', content_type="text", content='My name is Pete and I live in Munich'),
is_correct_answer=True, is_correct_document=True, origin="gold-label")])
]
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval(
queries=queries,
labels=labels,
params={"Retriever": {"top_k": 5}},
)
pipeline.print_eval_report(eval_result)
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
def test_document_search_calculate_metrics(retriever_with_docs):
pipeline = DocumentSearchPipeline(retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval(
queries=EVAL_QUERIES,
labels=EVAL_LABELS,
params={"Retriever": {"top_k": 5}}
)
metrics = eval_result.calculate_metrics()
assert "Retriever" in eval_result
assert len(eval_result) == 1
retriever_result = eval_result["Retriever"]
retriever_berlin = retriever_result[retriever_result['query'] == "Who lives in Berlin?"]
retriever_munich = retriever_result[retriever_result['query'] == "Who lives in Munich?"]
assert retriever_berlin[retriever_berlin['rank'] == 1]["document_id"].iloc[0] in retriever_berlin[retriever_berlin['rank'] == 1]["gold_document_ids"].iloc[0]
assert retriever_munich[retriever_munich['rank'] == 1]["document_id"].iloc[0] not in retriever_munich[retriever_munich['rank'] == 1]["gold_document_ids"].iloc[0]
assert metrics["Retriever"]["mrr"] == 0.5
assert metrics["Retriever"]["map"] == 0.5
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
assert metrics["Retriever"]["recall_single_hit"] == 0.5
assert metrics["Retriever"]["precision"] == 1.0/6
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
def test_generativeqa_calculate_metrics(document_store_with_docs: InMemoryDocumentStore, rag_generator):
retriever = EmbeddingRetriever(
document_store=document_store_with_docs,
embedding_model="deepset/sentence_bert",
use_gpu=False
)
document_store_with_docs.update_embeddings(retriever=retriever)
pipeline = GenerativeQAPipeline(generator=rag_generator, retriever=retriever)
eval_result: EvaluationResult = pipeline.eval(
queries=EVAL_QUERIES,
labels=EVAL_LABELS,
params={"Retriever": {"top_k": 5}}
)
metrics = eval_result.calculate_metrics()
assert "Retriever" in eval_result
assert "Generator" in eval_result
assert len(eval_result) == 2
assert metrics["Retriever"]["mrr"] == 0.5
assert metrics["Retriever"]["map"] == 0.5
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
assert metrics["Retriever"]["recall_single_hit"] == 0.5
assert metrics["Retriever"]["precision"] == 1.0/6
assert metrics["Generator"]["exact_match"] == 0.0
assert metrics["Generator"]["f1"] == 1.0/3
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
def test_summarizer_calculate_metrics(document_store_with_docs: ElasticsearchDocumentStore, summarizer):
retriever = EmbeddingRetriever(
document_store=document_store_with_docs,
embedding_model="deepset/sentence_bert",
use_gpu=False
)
document_store_with_docs.update_embeddings(retriever=retriever)
pipeline = SearchSummarizationPipeline(retriever=retriever, summarizer=summarizer, return_in_answer_format=True)
eval_result: EvaluationResult = pipeline.eval(
queries=EVAL_QUERIES,
labels=EVAL_LABELS,
params={"Retriever": {"top_k": 5}}
)
metrics = eval_result.calculate_metrics()
assert "Retriever" in eval_result
assert "Summarizer" in eval_result
assert len(eval_result) == 2
assert metrics["Retriever"]["mrr"] == 0.5
assert metrics["Retriever"]["map"] == 0.5
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
assert metrics["Retriever"]["recall_single_hit"] == 0.5
assert metrics["Retriever"]["precision"] == 1.0/6
assert metrics["Summarizer"]["mrr"] == 0.5
assert metrics["Summarizer"]["map"] == 0.5
assert metrics["Summarizer"]["recall_multi_hit"] == 0.5
assert metrics["Summarizer"]["recall_single_hit"] == 0.5
assert metrics["Summarizer"]["precision"] == 1.0/6
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
def test_faq_calculate_metrics(retriever_with_docs):
pipeline = FAQPipeline(retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval(
queries=EVAL_QUERIES,
labels=EVAL_LABELS,
params={"Retriever": {"top_k": 5}}
)
metrics = eval_result.calculate_metrics()
assert "Retriever" in eval_result
assert "Docs2Answers" in eval_result
assert len(eval_result) == 2
assert metrics["Retriever"]["mrr"] == 0.5
assert metrics["Retriever"]["map"] == 0.5
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
assert metrics["Retriever"]["recall_single_hit"] == 0.5
assert metrics["Retriever"]["precision"] == 1.0/6
assert metrics["Docs2Answers"]["exact_match"] == 0.0
assert metrics["Docs2Answers"]["f1"] == 0.0
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
def test_extractive_qa_eval_translation(reader, retriever_with_docs, de_to_en_translator):
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
pipeline = TranslationWrapperPipeline(input_translator=de_to_en_translator, output_translator=de_to_en_translator, pipeline=pipeline)
eval_result: EvaluationResult = pipeline.eval(
queries=EVAL_QUERIES,
labels=EVAL_LABELS,
params={"Retriever": {"top_k": 5}}
)
metrics = eval_result.calculate_metrics()
assert "Retriever" in eval_result
assert "Reader" in eval_result
assert "OutputTranslator" in eval_result
assert len(eval_result) == 3
assert metrics["Reader"]["exact_match"] == 1.0
assert metrics["Reader"]["f1"] == 1.0
assert metrics["Retriever"]["mrr"] == 0.5
assert metrics["Retriever"]["map"] == 0.5
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
assert metrics["Retriever"]["recall_single_hit"] == 0.5
assert metrics["Retriever"]["precision"] == 1.0/6
assert metrics["OutputTranslator"]["exact_match"] == 1.0
assert metrics["OutputTranslator"]["f1"] == 1.0
assert metrics["OutputTranslator"]["mrr"] == 0.5
assert metrics["OutputTranslator"]["map"] == 0.5
assert metrics["OutputTranslator"]["recall_multi_hit"] == 0.5
assert metrics["OutputTranslator"]["recall_single_hit"] == 0.5
assert metrics["OutputTranslator"]["precision"] == 1.0/6
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
def test_question_generation_eval(retriever_with_docs, question_generator):
pipeline = RetrieverQuestionGenerationPipeline(retriever=retriever_with_docs, question_generator=question_generator)
eval_result: EvaluationResult = pipeline.eval(
queries=EVAL_QUERIES,
labels=EVAL_LABELS,
params={"Retriever": {"top_k": 5}}
)
metrics = eval_result.calculate_metrics()
assert "Retriever" in eval_result
assert "Question Generator" in eval_result
assert len(eval_result) == 2
assert metrics["Retriever"]["mrr"] == 0.5
assert metrics["Retriever"]["map"] == 0.5
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
assert metrics["Retriever"]["recall_single_hit"] == 0.5
assert metrics["Retriever"]["precision"] == 1.0/6
assert metrics["Question Generator"]["mrr"] == 0.5
assert metrics["Question Generator"]["map"] == 0.5
assert metrics["Question Generator"]["recall_multi_hit"] == 0.5
assert metrics["Question Generator"]["recall_single_hit"] == 0.5
assert metrics["Question Generator"]["precision"] == 1.0/6
@pytest.mark.parametrize("document_store_with_docs", ["elasticsearch"], indirect=True)
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
def test_qa_multi_retriever_pipeline_eval(document_store_with_docs, reader):
es_retriever = ElasticsearchRetriever(document_store=document_store_with_docs)
dpr_retriever = DensePassageRetriever(document_store_with_docs)
document_store_with_docs.update_embeddings(retriever=dpr_retriever)
# QA Pipeline with two retrievers, we always want QA output
pipeline = Pipeline()
pipeline.add_node(component=TransformersQueryClassifier(), name="QueryClassifier", inputs=["Query"])
pipeline.add_node(component=dpr_retriever, name="DPRRetriever", inputs=["QueryClassifier.output_1"])
pipeline.add_node(component=es_retriever, name="ESRetriever", inputs=["QueryClassifier.output_2"])
pipeline.add_node(component=reader, name="QAReader", inputs=["ESRetriever", "DPRRetriever"])
# EVAL_QUERIES: 2 go dpr way
# in Berlin goes es way
queries = EVAL_QUERIES + ["in Berlin"]
labels = EVAL_LABELS + [
MultiLabel(labels=[Label(query="Berlin", answer=Answer(answer="Carla", offsets_in_context=[Span(11, 16)]),
document=Document(id='a0747b83aea0b60c4b114b15476dd32d', content_type="text", content='My name is Carla and I live in Berlin'),
is_correct_answer=True, is_correct_document=True, origin="gold-label")])
]
eval_result: EvaluationResult = pipeline.eval(
queries=queries,
labels=labels,
params={"ESRetriever": {"top_k": 5}, "DPRRetriever": {"top_k": 5}}
)
metrics = eval_result.calculate_metrics()
assert "ESRetriever" in eval_result
assert "DPRRetriever" in eval_result
assert "QAReader" in eval_result
assert len(eval_result) == 3
assert metrics["DPRRetriever"]["mrr"] == 0.5
assert metrics["DPRRetriever"]["map"] == 0.5
assert metrics["DPRRetriever"]["recall_multi_hit"] == 0.5
assert metrics["DPRRetriever"]["recall_single_hit"] == 0.5
assert metrics["DPRRetriever"]["precision"] == 1.0/6
assert metrics["ESRetriever"]["mrr"] == 1.0
assert metrics["ESRetriever"]["map"] == 1.0
assert metrics["ESRetriever"]["recall_multi_hit"] == 1.0
assert metrics["ESRetriever"]["recall_single_hit"] == 1.0
assert metrics["ESRetriever"]["precision"] == 1.0/3
assert metrics["QAReader"]["exact_match"] == 1.0
assert metrics["QAReader"]["f1"] == 1.0
@pytest.mark.parametrize("document_store_with_docs", ["elasticsearch"], indirect=True)
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
def test_multi_retriever_pipeline_eval(document_store_with_docs, reader):
es_retriever = ElasticsearchRetriever(document_store=document_store_with_docs)
dpr_retriever = DensePassageRetriever(document_store_with_docs)
document_store_with_docs.update_embeddings(retriever=dpr_retriever)
# QA Pipeline with two retrievers, no QA output
pipeline = Pipeline()
pipeline.add_node(component=TransformersQueryClassifier(), name="QueryClassifier", inputs=["Query"])
pipeline.add_node(component=dpr_retriever, name="DPRRetriever", inputs=["QueryClassifier.output_1"])
pipeline.add_node(component=es_retriever, name="ESRetriever", inputs=["QueryClassifier.output_2"])
# EVAL_QUERIES: 2 go dpr way
# in Berlin goes es way
queries = EVAL_QUERIES + ["in Berlin"]
labels = EVAL_LABELS + [
MultiLabel(labels=[Label(query="Berlin", answer=None,
document=Document(id='a0747b83aea0b60c4b114b15476dd32d', content_type="text", content='My name is Carla and I live in Berlin'),
is_correct_answer=True, is_correct_document=True, origin="gold-label")])
]
eval_result: EvaluationResult = pipeline.eval(
queries=queries,
labels=labels,
params={"ESRetriever": {"top_k": 5}, "DPRRetriever": {"top_k": 5}}
)
metrics = eval_result.calculate_metrics()
assert "ESRetriever" in eval_result
assert "DPRRetriever" in eval_result
assert len(eval_result) == 2
assert metrics["DPRRetriever"]["mrr"] == 0.5
assert metrics["DPRRetriever"]["map"] == 0.5
assert metrics["DPRRetriever"]["recall_multi_hit"] == 0.5
assert metrics["DPRRetriever"]["recall_single_hit"] == 0.5
assert metrics["DPRRetriever"]["precision"] == 1.0/6
assert metrics["ESRetriever"]["mrr"] == 1.0
assert metrics["ESRetriever"]["map"] == 1.0
assert metrics["ESRetriever"]["recall_multi_hit"] == 1.0
assert metrics["ESRetriever"]["recall_single_hit"] == 1.0
assert metrics["ESRetriever"]["precision"] == 1.0/3
@pytest.mark.parametrize("document_store_with_docs", ["elasticsearch"], indirect=True)
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
def test_multi_retriever_pipeline_with_asymmetric_qa_eval(document_store_with_docs, reader):
es_retriever = ElasticsearchRetriever(document_store=document_store_with_docs)
dpr_retriever = DensePassageRetriever(document_store_with_docs)
document_store_with_docs.update_embeddings(retriever=dpr_retriever)
# QA Pipeline with two retrievers, we only get QA output from dpr
pipeline = Pipeline()
pipeline.add_node(component=TransformersQueryClassifier(), name="QueryClassifier", inputs=["Query"])
pipeline.add_node(component=dpr_retriever, name="DPRRetriever", inputs=["QueryClassifier.output_1"])
pipeline.add_node(component=es_retriever, name="ESRetriever", inputs=["QueryClassifier.output_2"])
pipeline.add_node(component=reader, name="QAReader", inputs=["DPRRetriever"])
# EVAL_QUERIES: 2 go dpr way
# in Berlin goes es way
queries = EVAL_QUERIES + ["in Berlin"]
labels = EVAL_LABELS + [
MultiLabel(labels=[Label(query="Berlin", answer=None,
document=Document(id='a0747b83aea0b60c4b114b15476dd32d', content_type="text", content='My name is Carla and I live in Berlin'),
is_correct_answer=True, is_correct_document=True, origin="gold-label")])
]
eval_result: EvaluationResult = pipeline.eval(
queries=queries,
labels=labels,
params={"ESRetriever": {"top_k": 5}, "DPRRetriever": {"top_k": 5}}
)
metrics = eval_result.calculate_metrics()
assert "ESRetriever" in eval_result
assert "DPRRetriever" in eval_result
assert "DPRRetriever" in eval_result
assert "QAReader" in eval_result
assert len(eval_result) == 3
assert metrics["DPRRetriever"]["mrr"] == 0.5
assert metrics["DPRRetriever"]["map"] == 0.5
assert metrics["DPRRetriever"]["recall_multi_hit"] == 0.5
assert metrics["DPRRetriever"]["recall_single_hit"] == 0.5
assert metrics["DPRRetriever"]["precision"] == 1.0/6
assert metrics["ESRetriever"]["mrr"] == 1.0
assert metrics["ESRetriever"]["map"] == 1.0
assert metrics["ESRetriever"]["recall_multi_hit"] == 1.0
assert metrics["ESRetriever"]["recall_single_hit"] == 1.0
assert metrics["ESRetriever"]["precision"] == 1.0/3
assert metrics["QAReader"]["exact_match"] == 1.0
assert metrics["QAReader"]["f1"] == 1.0