940 lines
39 KiB
Python
Raw Normal View History

# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
#
# SPDX-License-Identifier: Apache-2.0
from unittest.mock import patch
import pytest
import logging
import os
from datetime import datetime
from openai import OpenAIError
from openai.types.chat import ChatCompletion, ChatCompletionChunk, ChatCompletionMessage, ChatCompletionMessageToolCall
from openai.types.chat.chat_completion import Choice
from openai.types.completion_usage import CompletionTokensDetails, CompletionUsage, PromptTokensDetails
from openai.types.chat.chat_completion_message_tool_call import Function
from openai.types.chat import chat_completion_chunk
from haystack.components.generators.utils import print_streaming_chunk
from haystack.dataclasses import StreamingChunk
from haystack.utils.auth import Secret
from haystack.dataclasses import ChatMessage, ToolCall
from haystack.tools import Tool
from haystack.components.generators.chat.openai import OpenAIChatGenerator
@pytest.fixture
def chat_messages():
return [
ChatMessage.from_system("You are a helpful assistant"),
ChatMessage.from_user("What's the capital of France"),
]
@pytest.fixture
def mock_chat_completion_chunk_with_tools(openai_mock_stream):
"""
Mock the OpenAI API completion chunk response and reuse it for tests
"""
with patch("openai.resources.chat.completions.Completions.create") as mock_chat_completion_create:
completion = ChatCompletionChunk(
id="foo",
model="gpt-4",
object="chat.completion.chunk",
choices=[
chat_completion_chunk.Choice(
finish_reason="tool_calls",
logprobs=None,
index=0,
delta=chat_completion_chunk.ChoiceDelta(
role="assistant",
tool_calls=[
chat_completion_chunk.ChoiceDeltaToolCall(
index=0,
id="123",
type="function",
function=chat_completion_chunk.ChoiceDeltaToolCallFunction(
name="weather", arguments='{"city": "Paris"}'
),
)
],
),
)
],
created=int(datetime.now().timestamp()),
)
mock_chat_completion_create.return_value = openai_mock_stream(
completion, cast_to=None, response=None, client=None
)
yield mock_chat_completion_create
@pytest.fixture
def tools():
tool_parameters = {"type": "object", "properties": {"city": {"type": "string"}}, "required": ["city"]}
tool = Tool(
name="weather",
description="useful to determine the weather in a given location",
parameters=tool_parameters,
function=lambda x: x,
)
return [tool]
class TestOpenAIChatGenerator:
def test_init_default(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
component = OpenAIChatGenerator()
assert component.client.api_key == "test-api-key"
assert component.model == "gpt-4o-mini"
assert component.streaming_callback is None
assert not component.generation_kwargs
assert component.client.timeout == 30
assert component.client.max_retries == 5
assert component.tools is None
assert not component.tools_strict
def test_init_fail_wo_api_key(self, monkeypatch):
monkeypatch.delenv("OPENAI_API_KEY", raising=False)
with pytest.raises(ValueError):
OpenAIChatGenerator()
def test_init_fail_with_duplicate_tool_names(self, monkeypatch, tools):
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
duplicate_tools = [tools[0], tools[0]]
with pytest.raises(ValueError):
OpenAIChatGenerator(tools=duplicate_tools)
def test_init_with_parameters(self, monkeypatch):
tool = Tool(name="name", description="description", parameters={"x": {"type": "string"}}, function=lambda x: x)
monkeypatch.setenv("OPENAI_TIMEOUT", "100")
monkeypatch.setenv("OPENAI_MAX_RETRIES", "10")
component = OpenAIChatGenerator(
api_key=Secret.from_token("test-api-key"),
model="gpt-4o-mini",
streaming_callback=print_streaming_chunk,
api_base_url="test-base-url",
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
timeout=40.0,
max_retries=1,
tools=[tool],
tools_strict=True,
)
assert component.client.api_key == "test-api-key"
assert component.model == "gpt-4o-mini"
assert component.streaming_callback is print_streaming_chunk
assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"}
assert component.client.timeout == 40.0
assert component.client.max_retries == 1
assert component.tools == [tool]
assert component.tools_strict
def test_init_with_parameters_and_env_vars(self, monkeypatch):
monkeypatch.setenv("OPENAI_TIMEOUT", "100")
monkeypatch.setenv("OPENAI_MAX_RETRIES", "10")
component = OpenAIChatGenerator(
api_key=Secret.from_token("test-api-key"),
model="gpt-4o-mini",
streaming_callback=print_streaming_chunk,
api_base_url="test-base-url",
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
)
assert component.client.api_key == "test-api-key"
assert component.model == "gpt-4o-mini"
assert component.streaming_callback is print_streaming_chunk
assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"}
assert component.client.timeout == 100.0
assert component.client.max_retries == 10
def test_to_dict_default(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
component = OpenAIChatGenerator()
data = component.to_dict()
assert data == {
"type": "haystack.components.generators.chat.openai.OpenAIChatGenerator",
"init_parameters": {
"api_key": {"env_vars": ["OPENAI_API_KEY"], "strict": True, "type": "env_var"},
"model": "gpt-4o-mini",
"organization": None,
"streaming_callback": None,
"api_base_url": None,
"generation_kwargs": {},
"tools": None,
"tools_strict": False,
"max_retries": None,
"timeout": None,
},
}
def test_to_dict_with_parameters(self, monkeypatch):
tool = Tool(name="name", description="description", parameters={"x": {"type": "string"}}, function=print)
monkeypatch.setenv("ENV_VAR", "test-api-key")
component = OpenAIChatGenerator(
api_key=Secret.from_env_var("ENV_VAR"),
model="gpt-4o-mini",
streaming_callback=print_streaming_chunk,
api_base_url="test-base-url",
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
tools=[tool],
tools_strict=True,
max_retries=10,
timeout=100.0,
)
data = component.to_dict()
assert data == {
"type": "haystack.components.generators.chat.openai.OpenAIChatGenerator",
"init_parameters": {
"api_key": {"env_vars": ["ENV_VAR"], "strict": True, "type": "env_var"},
"model": "gpt-4o-mini",
"organization": None,
"api_base_url": "test-base-url",
"max_retries": 10,
"timeout": 100.0,
"streaming_callback": "haystack.components.generators.utils.print_streaming_chunk",
"generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
"tools": [
{
"type": "haystack.tools.tool.Tool",
"data": {
"description": "description",
"function": "builtins.print",
"inputs_from_state": None,
"name": "name",
"outputs_to_state": None,
"outputs_to_string": None,
"parameters": {"x": {"type": "string"}},
},
}
],
"tools_strict": True,
},
}
def test_from_dict(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "fake-api-key")
data = {
"type": "haystack.components.generators.chat.openai.OpenAIChatGenerator",
"init_parameters": {
"api_key": {"env_vars": ["OPENAI_API_KEY"], "strict": True, "type": "env_var"},
"model": "gpt-4o-mini",
"api_base_url": "test-base-url",
"streaming_callback": "haystack.components.generators.utils.print_streaming_chunk",
"max_retries": 10,
"timeout": 100.0,
"generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
"tools": [
{
"type": "haystack.tools.tool.Tool",
"data": {
"description": "description",
"function": "builtins.print",
"name": "name",
"parameters": {"x": {"type": "string"}},
},
}
],
"tools_strict": True,
},
}
component = OpenAIChatGenerator.from_dict(data)
assert isinstance(component, OpenAIChatGenerator)
assert component.model == "gpt-4o-mini"
assert component.streaming_callback is print_streaming_chunk
assert component.api_base_url == "test-base-url"
assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"}
assert component.api_key == Secret.from_env_var("OPENAI_API_KEY")
assert component.tools == [
Tool(name="name", description="description", parameters={"x": {"type": "string"}}, function=print)
]
assert component.tools_strict
assert component.client.timeout == 100.0
assert component.client.max_retries == 10
def test_from_dict_fail_wo_env_var(self, monkeypatch):
monkeypatch.delenv("OPENAI_API_KEY", raising=False)
data = {
"type": "haystack.components.generators.chat.openai.OpenAIChatGenerator",
"init_parameters": {
"api_key": {"env_vars": ["OPENAI_API_KEY"], "strict": True, "type": "env_var"},
"model": "gpt-4",
"organization": None,
"api_base_url": "test-base-url",
"streaming_callback": "haystack.components.generators.utils.print_streaming_chunk",
"generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
},
}
with pytest.raises(ValueError):
OpenAIChatGenerator.from_dict(data)
def test_run(self, chat_messages, openai_mock_chat_completion):
component = OpenAIChatGenerator(api_key=Secret.from_token("test-api-key"))
response = component.run(chat_messages)
# check that the component returns the correct ChatMessage response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert [isinstance(reply, ChatMessage) for reply in response["replies"]]
def test_run_with_params(self, chat_messages, openai_mock_chat_completion):
component = OpenAIChatGenerator(
api_key=Secret.from_token("test-api-key"), generation_kwargs={"max_tokens": 10, "temperature": 0.5}
)
response = component.run(chat_messages)
# check that the component calls the OpenAI API with the correct parameters
_, kwargs = openai_mock_chat_completion.call_args
assert kwargs["max_tokens"] == 10
assert kwargs["temperature"] == 0.5
# check that the tools are not passed to the OpenAI API (the generator is initialized without tools)
assert "tools" not in kwargs
# check that the component returns the correct response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert [isinstance(reply, ChatMessage) for reply in response["replies"]]
def test_run_with_params_streaming(self, chat_messages, openai_mock_chat_completion_chunk):
streaming_callback_called = False
def streaming_callback(chunk: StreamingChunk) -> None:
nonlocal streaming_callback_called
streaming_callback_called = True
component = OpenAIChatGenerator(
api_key=Secret.from_token("test-api-key"), streaming_callback=streaming_callback
)
response = component.run(chat_messages)
# check we called the streaming callback
assert streaming_callback_called
# check that the component still returns the correct response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert [isinstance(reply, ChatMessage) for reply in response["replies"]]
assert "Hello" in response["replies"][0].text # see openai_mock_chat_completion_chunk
def test_run_with_streaming_callback_in_run_method(self, chat_messages, openai_mock_chat_completion_chunk):
streaming_callback_called = False
def streaming_callback(chunk: StreamingChunk) -> None:
nonlocal streaming_callback_called
streaming_callback_called = True
component = OpenAIChatGenerator(api_key=Secret.from_token("test-api-key"))
response = component.run(chat_messages, streaming_callback=streaming_callback)
# check we called the streaming callback
assert streaming_callback_called
# check that the component still returns the correct response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert [isinstance(reply, ChatMessage) for reply in response["replies"]]
assert "Hello" in response["replies"][0].text # see openai_mock_chat_completion_chunk
def test_check_abnormal_completions(self, caplog):
caplog.set_level(logging.INFO)
component = OpenAIChatGenerator(api_key=Secret.from_token("test-api-key"))
messages = [
ChatMessage.from_assistant(
2023-12-21 17:09:58 +05:30
"", meta={"finish_reason": "content_filter" if i % 2 == 0 else "length", "index": i}
)
for i, _ in enumerate(range(4))
]
for m in messages:
component._check_finish_reason(m.meta)
# check truncation warning
message_template = (
"The completion for index {index} has been truncated before reaching a natural stopping point. "
"Increase the max_tokens parameter to allow for longer completions."
)
for index in [1, 3]:
assert caplog.records[index].message == message_template.format(index=index)
# check content filter warning
message_template = "The completion for index {index} has been truncated due to the content filter."
for index in [0, 2]:
assert caplog.records[index].message == message_template.format(index=index)
def test_run_with_tools(self, tools):
with patch("openai.resources.chat.completions.Completions.create") as mock_chat_completion_create:
completion = ChatCompletion(
id="foo",
model="gpt-4",
object="chat.completion",
choices=[
Choice(
finish_reason="tool_calls",
logprobs=None,
index=0,
message=ChatCompletionMessage(
role="assistant",
tool_calls=[
ChatCompletionMessageToolCall(
id="123",
type="function",
function=Function(name="weather", arguments='{"city": "Paris"}'),
)
],
),
)
],
created=int(datetime.now().timestamp()),
usage=CompletionUsage(
completion_tokens=40,
prompt_tokens=57,
total_tokens=97,
completion_tokens_details=CompletionTokensDetails(
accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0
),
prompt_tokens_details=PromptTokensDetails(audio_tokens=0, cached_tokens=0),
),
)
mock_chat_completion_create.return_value = completion
component = OpenAIChatGenerator(api_key=Secret.from_token("test-api-key"), tools=tools, tools_strict=True)
response = component.run([ChatMessage.from_user("What's the weather like in Paris?")])
# ensure that the tools are passed to the OpenAI API
function_spec = {**tools[0].tool_spec}
function_spec["strict"] = True
function_spec["parameters"]["additionalProperties"] = False
assert mock_chat_completion_create.call_args[1]["tools"] == [{"type": "function", "function": function_spec}]
assert len(response["replies"]) == 1
message = response["replies"][0]
assert not message.texts
assert not message.text
assert message.tool_calls
tool_call = message.tool_call
assert isinstance(tool_call, ToolCall)
assert tool_call.tool_name == "weather"
assert tool_call.arguments == {"city": "Paris"}
assert message.meta["finish_reason"] == "tool_calls"
assert message.meta["usage"]["completion_tokens"] == 40
def test_run_with_tools_streaming(self, mock_chat_completion_chunk_with_tools, tools):
streaming_callback_called = False
def streaming_callback(chunk: StreamingChunk) -> None:
nonlocal streaming_callback_called
streaming_callback_called = True
component = OpenAIChatGenerator(
api_key=Secret.from_token("test-api-key"), streaming_callback=streaming_callback
)
chat_messages = [ChatMessage.from_user("What's the weather like in Paris?")]
response = component.run(chat_messages, tools=tools)
# check we called the streaming callback
assert streaming_callback_called
# check that the component still returns the correct response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert [isinstance(reply, ChatMessage) for reply in response["replies"]]
message = response["replies"][0]
assert message.tool_calls
tool_call = message.tool_call
assert isinstance(tool_call, ToolCall)
assert tool_call.tool_name == "weather"
assert tool_call.arguments == {"city": "Paris"}
assert message.meta["finish_reason"] == "tool_calls"
def test_invalid_tool_call_json(self, tools, caplog):
caplog.set_level(logging.WARNING)
with patch("openai.resources.chat.completions.Completions.create") as mock_create:
mock_create.return_value = ChatCompletion(
id="test",
model="gpt-4o-mini",
object="chat.completion",
choices=[
Choice(
finish_reason="tool_calls",
index=0,
message=ChatCompletionMessage(
role="assistant",
tool_calls=[
ChatCompletionMessageToolCall(
id="1",
type="function",
function=Function(name="weather", arguments='"invalid": "json"'),
)
],
),
)
],
created=1234567890,
usage=CompletionUsage(
completion_tokens=47,
prompt_tokens=540,
total_tokens=587,
completion_tokens_details=CompletionTokensDetails(
accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0
),
prompt_tokens_details=PromptTokensDetails(audio_tokens=0, cached_tokens=0),
),
)
component = OpenAIChatGenerator(api_key=Secret.from_token("test-api-key"), tools=tools)
response = component.run([ChatMessage.from_user("What's the weather in Paris?")])
assert len(response["replies"]) == 1
message = response["replies"][0]
assert len(message.tool_calls) == 0
assert "OpenAI returned a malformed JSON string for tool call arguments" in caplog.text
assert message.meta["finish_reason"] == "tool_calls"
assert message.meta["usage"]["completion_tokens"] == 47
def test_convert_streaming_chunks_to_chat_message_tool_calls_in_any_chunk(self):
component = OpenAIChatGenerator(api_key=Secret.from_token("test-api-key"))
chunk = chat_completion_chunk.ChatCompletionChunk(
id="chatcmpl-B2g1XYv1WzALulC5c8uLtJgvEB48I",
choices=[
chat_completion_chunk.Choice(
delta=chat_completion_chunk.ChoiceDelta(
content=None, function_call=None, refusal=None, role=None, tool_calls=None
),
finish_reason="tool_calls",
index=0,
logprobs=None,
)
],
created=1739977895,
model="gpt-4o-mini-2024-07-18",
object="chat.completion.chunk",
service_tier="default",
system_fingerprint="fp_00428b782a",
usage=None,
)
chunks = [
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": None,
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.910076",
},
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=0,
id="call_ZOj5l67zhZOx6jqjg7ATQwb6",
function=chat_completion_chunk.ChoiceDeltaToolCallFunction(
arguments="", name="rag_pipeline_tool"
),
type="function",
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.913919",
},
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=0,
id=None,
function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments='{"qu', name=None),
type=None,
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.914439",
},
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=0,
id=None,
function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments='ery":', name=None),
type=None,
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.924146",
},
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=0,
id=None,
function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments=' "Wher', name=None),
type=None,
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.924420",
},
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=0,
id=None,
function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments="e do", name=None),
type=None,
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.944398",
},
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=0,
id=None,
function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments="es Ma", name=None),
type=None,
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.944958",
},
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=0,
id=None,
function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments="rk liv", name=None),
type=None,
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.945507",
},
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=0,
id=None,
function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments='e?"}', name=None),
type=None,
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.946018",
},
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=1,
id="call_STxsYY69wVOvxWqopAt3uWTB",
function=chat_completion_chunk.ChoiceDeltaToolCallFunction(
arguments="", name="get_weather"
),
type="function",
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.946578",
},
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=1,
id=None,
function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments='{"ci', name=None),
type=None,
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.946981",
},
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=1,
id=None,
function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments='ty": ', name=None),
type=None,
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.947411",
},
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=1,
id=None,
function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments='"Berli', name=None),
type=None,
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.947643",
},
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": [
chat_completion_chunk.ChoiceDeltaToolCall(
index=1,
id=None,
function=chat_completion_chunk.ChoiceDeltaToolCallFunction(arguments='n"}', name=None),
type=None,
)
],
"finish_reason": None,
"received_at": "2025-02-19T16:02:55.947939",
},
),
StreamingChunk(
content="",
meta={
"model": "gpt-4o-mini-2024-07-18",
"index": 0,
"tool_calls": None,
"finish_reason": "tool_calls",
"received_at": "2025-02-19T16:02:55.948772",
},
),
]
# Convert chunks to a chat message
result = component._convert_streaming_chunks_to_chat_message(chunk, chunks)
assert not result.texts
assert not result.text
# Verify both tool calls were found and processed
assert len(result.tool_calls) == 2
assert result.tool_calls[0].id == "call_ZOj5l67zhZOx6jqjg7ATQwb6"
assert result.tool_calls[0].tool_name == "rag_pipeline_tool"
assert result.tool_calls[0].arguments == {"query": "Where does Mark live?"}
assert result.tool_calls[1].id == "call_STxsYY69wVOvxWqopAt3uWTB"
assert result.tool_calls[1].tool_name == "get_weather"
assert result.tool_calls[1].arguments == {"city": "Berlin"}
# Verify meta information
assert result.meta["model"] == "gpt-4o-mini-2024-07-18"
assert result.meta["finish_reason"] == "tool_calls"
assert result.meta["index"] == 0
assert result.meta["completion_start_time"] == "2025-02-19T16:02:55.910076"
def test_convert_usage_chunk_to_streaming_chunk(self):
component = OpenAIChatGenerator(api_key=Secret.from_token("test-api-key"))
chunk = ChatCompletionChunk(
id="chatcmpl-BC1y4wqIhe17R8sv3lgLcWlB4tXCw",
choices=[],
created=1742207200,
model="gpt-4o-mini-2024-07-18",
object="chat.completion.chunk",
service_tier="default",
system_fingerprint="fp_06737a9306",
usage=CompletionUsage(
completion_tokens=8,
prompt_tokens=13,
total_tokens=21,
completion_tokens_details=CompletionTokensDetails(
accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0
),
prompt_tokens_details=PromptTokensDetails(audio_tokens=0, cached_tokens=0),
),
)
result = component._convert_chat_completion_chunk_to_streaming_chunk(chunk)
assert result.content == ""
assert result.meta["model"] == "gpt-4o-mini-2024-07-18"
assert result.meta["received_at"] is not None
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
@pytest.mark.integration
def test_live_run(self):
chat_messages = [ChatMessage.from_user("What's the capital of France")]
component = OpenAIChatGenerator(generation_kwargs={"n": 1})
results = component.run(chat_messages)
assert len(results["replies"]) == 1
message: ChatMessage = results["replies"][0]
assert "Paris" in message.text
assert "gpt-4o" in message.meta["model"]
assert message.meta["finish_reason"] == "stop"
assert message.meta["usage"]["prompt_tokens"] > 0
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
@pytest.mark.integration
def test_live_run_wrong_model(self, chat_messages):
component = OpenAIChatGenerator(model="something-obviously-wrong")
with pytest.raises(OpenAIError):
component.run(chat_messages)
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
@pytest.mark.integration
def test_live_run_streaming(self):
class Callback:
def __init__(self):
self.responses = ""
self.counter = 0
def __call__(self, chunk: StreamingChunk) -> None:
self.counter += 1
self.responses += chunk.content if chunk.content else ""
callback = Callback()
component = OpenAIChatGenerator(
streaming_callback=callback, generation_kwargs={"stream_options": {"include_usage": True}}
)
results = component.run([ChatMessage.from_user("What's the capital of France?")])
assert len(results["replies"]) == 1
message: ChatMessage = results["replies"][0]
assert "Paris" in message.text
assert "gpt-4o" in message.meta["model"]
assert message.meta["finish_reason"] == "stop"
assert callback.counter > 1
assert "Paris" in callback.responses
# check that the completion_start_time is set and valid ISO format
assert "completion_start_time" in message.meta
assert datetime.fromisoformat(message.meta["completion_start_time"]) <= datetime.now()
assert isinstance(message.meta["usage"], dict)
assert message.meta["usage"]["prompt_tokens"] > 0
assert message.meta["usage"]["completion_tokens"] > 0
assert message.meta["usage"]["total_tokens"] > 0
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
@pytest.mark.integration
def test_live_run_with_tools(self, tools):
chat_messages = [ChatMessage.from_user("What's the weather like in Paris?")]
component = OpenAIChatGenerator(tools=tools)
results = component.run(chat_messages)
assert len(results["replies"]) == 1
message = results["replies"][0]
assert not message.texts
assert not message.text
assert message.tool_calls
tool_call = message.tool_call
assert isinstance(tool_call, ToolCall)
assert tool_call.tool_name == "weather"
assert tool_call.arguments == {"city": "Paris"}
assert message.meta["finish_reason"] == "tool_calls"
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
@pytest.mark.integration
def test_live_run_with_tools_streaming(self, tools):
chat_messages = [ChatMessage.from_user("What's the weather like in Paris?")]
component = OpenAIChatGenerator(tools=tools, streaming_callback=print_streaming_chunk)
results = component.run(chat_messages)
assert len(results["replies"]) == 1
message = results["replies"][0]
assert not message.texts
assert not message.text
assert message.tool_calls
tool_call = message.tool_call
assert isinstance(tool_call, ToolCall)
assert tool_call.tool_name == "weather"
assert tool_call.arguments == {"city": "Paris"}
assert message.meta["finish_reason"] == "tool_calls"