haystack/test/pipelines/test_eval_batch.py

1044 lines
48 KiB
Python
Raw Normal View History

import logging
import pytest
import sys
from haystack.document_stores.memory import InMemoryDocumentStore
from haystack.document_stores.elasticsearch import ElasticsearchDocumentStore
from haystack.nodes.preprocessor import PreProcessor
from haystack.nodes.evaluator import EvalAnswers, EvalDocuments
from haystack.nodes.query_classifier.transformers import TransformersQueryClassifier
from haystack.nodes.retriever.dense import DensePassageRetriever
from haystack.nodes.retriever.sparse import BM25Retriever
from haystack.nodes.summarizer.transformers import TransformersSummarizer
from haystack.pipelines.base import Pipeline
from haystack.pipelines import ExtractiveQAPipeline, GenerativeQAPipeline, SearchSummarizationPipeline
from haystack.pipelines.standard_pipelines import (
DocumentSearchPipeline,
FAQPipeline,
RetrieverQuestionGenerationPipeline,
TranslationWrapperPipeline,
)
from haystack.nodes.translator.transformers import TransformersTranslator
from haystack.schema import Answer, Document, EvaluationResult, Label, MultiLabel, Span
from ..conftest import SAMPLES_PATH
@pytest.mark.skipif(sys.platform in ["win32", "cygwin"], reason="Causes OOM on windows github runner")
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
@pytest.mark.parametrize("retriever_with_docs", ["embedding"], indirect=True)
def test_generativeqa_calculate_metrics(
document_store_with_docs: InMemoryDocumentStore, rag_generator, retriever_with_docs
):
document_store_with_docs.update_embeddings(retriever=retriever_with_docs)
pipeline = GenerativeQAPipeline(generator=rag_generator, retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval_batch(labels=EVAL_LABELS, params={"Retriever": {"top_k": 5}})
metrics = eval_result.calculate_metrics(document_scope="document_id")
assert "Retriever" in eval_result
assert "Generator" in eval_result
assert len(eval_result) == 2
assert metrics["Retriever"]["mrr"] == 0.5
assert metrics["Retriever"]["map"] == 0.5
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
assert metrics["Retriever"]["recall_single_hit"] == 0.5
assert metrics["Retriever"]["precision"] == 0.1
assert metrics["Retriever"]["ndcg"] == 0.5
assert metrics["Generator"]["exact_match"] == 0.0
assert metrics["Generator"]["f1"] == 1.0 / 3
@pytest.mark.skipif(sys.platform in ["win32", "cygwin"], reason="Causes OOM on windows github runner")
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
@pytest.mark.parametrize("retriever_with_docs", ["embedding"], indirect=True)
def test_summarizer_calculate_metrics(document_store_with_docs: ElasticsearchDocumentStore, retriever_with_docs):
document_store_with_docs.update_embeddings(retriever=retriever_with_docs)
summarizer = TransformersSummarizer(model_name_or_path="sshleifer/distill-pegasus-xsum-16-4", use_gpu=False)
pipeline = SearchSummarizationPipeline(
retriever=retriever_with_docs, summarizer=summarizer, return_in_answer_format=True
)
eval_result: EvaluationResult = pipeline.eval_batch(
labels=EVAL_LABELS, params={"Retriever": {"top_k": 5}}, context_matching_min_length=10
)
metrics = eval_result.calculate_metrics(document_scope="context")
assert "Retriever" in eval_result
assert "Summarizer" in eval_result
assert len(eval_result) == 2
assert metrics["Retriever"]["mrr"] == 1.0
assert metrics["Retriever"]["map"] == pytest.approx(0.9167, 1e-4)
assert metrics["Retriever"]["recall_multi_hit"] == pytest.approx(0.9167, 1e-4)
assert metrics["Retriever"]["recall_single_hit"] == 1.0
assert metrics["Retriever"]["precision"] == 1.0
assert metrics["Retriever"]["ndcg"] == pytest.approx(0.9461, 1e-4)
assert metrics["Summarizer"]["mrr"] == 1.0
assert metrics["Summarizer"]["map"] == 0.735
assert metrics["Summarizer"]["recall_multi_hit"] == 0.8
assert metrics["Summarizer"]["recall_single_hit"] == 1.0
assert metrics["Summarizer"]["precision"] == 0.8
assert metrics["Summarizer"]["ndcg"] == pytest.approx(0.8422, 1e-4)
EVAL_LABELS = [
MultiLabel(
labels=[
Label(
query="Who lives in Berlin?",
answer=Answer(answer="Carla", offsets_in_context=[Span(11, 16)]),
document=Document(
id="a0747b83aea0b60c4b114b15476dd32d",
content_type="text",
content="My name is Carla and I live in Berlin",
),
is_correct_answer=True,
is_correct_document=True,
origin="gold-label",
)
]
),
MultiLabel(
labels=[
Label(
query="Who lives in Munich?",
answer=Answer(answer="Carla", offsets_in_context=[Span(11, 16)]),
document=Document(
id="something_else", content_type="text", content="My name is Carla and I live in Munich"
),
is_correct_answer=True,
is_correct_document=True,
origin="gold-label",
)
]
),
]
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
def test_extractive_qa_eval(reader, retriever_with_docs, tmp_path):
labels = EVAL_LABELS[:1]
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
eval_result = pipeline.eval_batch(labels=labels, params={"Retriever": {"top_k": 5}})
metrics = eval_result.calculate_metrics(document_scope="document_id")
reader_result = eval_result["Reader"]
retriever_result = eval_result["Retriever"]
assert (
reader_result[reader_result["rank"] == 1]["answer"].iloc[0]
in reader_result[reader_result["rank"] == 1]["gold_answers"].iloc[0]
)
assert (
retriever_result[retriever_result["rank"] == 1]["document_id"].iloc[0]
in retriever_result[retriever_result["rank"] == 1]["gold_document_ids"].iloc[0]
)
assert metrics["Reader"]["exact_match"] == 1.0
assert metrics["Reader"]["f1"] == 1.0
assert metrics["Retriever"]["mrr"] == 1.0
assert metrics["Retriever"]["recall_multi_hit"] == 1.0
assert metrics["Retriever"]["recall_single_hit"] == 1.0
assert metrics["Retriever"]["precision"] == 0.2
assert metrics["Retriever"]["map"] == 1.0
assert metrics["Retriever"]["ndcg"] == 1.0
eval_result.save(tmp_path)
saved_eval_result = EvaluationResult.load(tmp_path)
metrics = saved_eval_result.calculate_metrics(document_scope="document_id")
assert (
reader_result[reader_result["rank"] == 1]["answer"].iloc[0]
in reader_result[reader_result["rank"] == 1]["gold_answers"].iloc[0]
)
assert (
retriever_result[retriever_result["rank"] == 1]["document_id"].iloc[0]
in retriever_result[retriever_result["rank"] == 1]["gold_document_ids"].iloc[0]
)
assert metrics["Reader"]["exact_match"] == 1.0
assert metrics["Reader"]["f1"] == 1.0
assert metrics["Retriever"]["mrr"] == 1.0
assert metrics["Retriever"]["recall_multi_hit"] == 1.0
assert metrics["Retriever"]["recall_single_hit"] == 1.0
assert metrics["Retriever"]["precision"] == 0.2
assert metrics["Retriever"]["map"] == 1.0
assert metrics["Retriever"]["ndcg"] == 1.0
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
def test_extractive_qa_eval_multiple_queries(reader, retriever_with_docs, tmp_path):
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval_batch(labels=EVAL_LABELS, params={"Retriever": {"top_k": 5}})
metrics = eval_result.calculate_metrics(document_scope="document_id")
reader_result = eval_result["Reader"]
retriever_result = eval_result["Retriever"]
reader_berlin = reader_result[reader_result["query"] == "Who lives in Berlin?"]
reader_munich = reader_result[reader_result["query"] == "Who lives in Munich?"]
retriever_berlin = retriever_result[retriever_result["query"] == "Who lives in Berlin?"]
retriever_munich = retriever_result[retriever_result["query"] == "Who lives in Munich?"]
assert (
reader_berlin[reader_berlin["rank"] == 1]["answer"].iloc[0]
in reader_berlin[reader_berlin["rank"] == 1]["gold_answers"].iloc[0]
)
assert (
retriever_berlin[retriever_berlin["rank"] == 1]["document_id"].iloc[0]
in retriever_berlin[retriever_berlin["rank"] == 1]["gold_document_ids"].iloc[0]
)
assert (
reader_munich[reader_munich["rank"] == 1]["answer"].iloc[0]
not in reader_munich[reader_munich["rank"] == 1]["gold_answers"].iloc[0]
)
assert (
retriever_munich[retriever_munich["rank"] == 1]["document_id"].iloc[0]
not in retriever_munich[retriever_munich["rank"] == 1]["gold_document_ids"].iloc[0]
)
assert metrics["Reader"]["exact_match"] == 1.0
assert metrics["Reader"]["f1"] == 1.0
assert metrics["Retriever"]["mrr"] == 0.5
assert metrics["Retriever"]["map"] == 0.5
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
assert metrics["Retriever"]["recall_single_hit"] == 0.5
assert metrics["Retriever"]["precision"] == 0.1
assert metrics["Retriever"]["ndcg"] == 0.5
eval_result.save(tmp_path)
saved_eval_result = EvaluationResult.load(tmp_path)
metrics = saved_eval_result.calculate_metrics(document_scope="document_id")
assert (
reader_berlin[reader_berlin["rank"] == 1]["answer"].iloc[0]
in reader_berlin[reader_berlin["rank"] == 1]["gold_answers"].iloc[0]
)
assert (
retriever_berlin[retriever_berlin["rank"] == 1]["document_id"].iloc[0]
in retriever_berlin[retriever_berlin["rank"] == 1]["gold_document_ids"].iloc[0]
)
assert (
reader_munich[reader_munich["rank"] == 1]["answer"].iloc[0]
not in reader_munich[reader_munich["rank"] == 1]["gold_answers"].iloc[0]
)
assert (
retriever_munich[retriever_munich["rank"] == 1]["document_id"].iloc[0]
not in retriever_munich[retriever_munich["rank"] == 1]["gold_document_ids"].iloc[0]
)
assert metrics["Reader"]["exact_match"] == 1.0
assert metrics["Reader"]["f1"] == 1.0
assert metrics["Retriever"]["mrr"] == 0.5
assert metrics["Retriever"]["map"] == 0.5
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
assert metrics["Retriever"]["recall_single_hit"] == 0.5
assert metrics["Retriever"]["precision"] == 0.1
assert metrics["Retriever"]["ndcg"] == 0.5
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
def test_extractive_qa_eval_sas(reader, retriever_with_docs):
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval_batch(
labels=EVAL_LABELS,
params={"Retriever": {"top_k": 5}},
sas_model_name_or_path="sentence-transformers/paraphrase-MiniLM-L3-v2",
)
metrics = eval_result.calculate_metrics(document_scope="document_id")
assert metrics["Reader"]["exact_match"] == 1.0
assert metrics["Reader"]["f1"] == 1.0
assert metrics["Retriever"]["mrr"] == 0.5
assert metrics["Retriever"]["map"] == 0.5
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
assert metrics["Retriever"]["recall_single_hit"] == 0.5
assert metrics["Retriever"]["precision"] == 0.1
assert metrics["Retriever"]["ndcg"] == 0.5
assert "sas" in metrics["Reader"]
assert metrics["Reader"]["sas"] == pytest.approx(1.0)
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
def test_reader_eval_in_pipeline(reader):
pipeline = Pipeline()
pipeline.add_node(component=reader, name="Reader", inputs=["Query"])
eval_result: EvaluationResult = pipeline.eval_batch(
labels=EVAL_LABELS,
documents=[[label.document for label in multilabel.labels] for multilabel in EVAL_LABELS],
params={},
)
metrics = eval_result.calculate_metrics(document_scope="document_id")
assert metrics["Reader"]["exact_match"] == 1.0
assert metrics["Reader"]["f1"] == 1.0
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
def test_extractive_qa_eval_document_scope(reader, retriever_with_docs):
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval_batch(
labels=EVAL_LABELS,
params={"Retriever": {"top_k": 5}},
context_matching_min_length=20, # artificially set down min_length to see if context matching is working properly
)
metrics = eval_result.calculate_metrics(document_scope="document_id")
assert metrics["Retriever"]["mrr"] == 0.5
assert metrics["Retriever"]["map"] == 0.5
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
assert metrics["Retriever"]["recall_single_hit"] == 0.5
assert metrics["Retriever"]["precision"] == 0.1
assert metrics["Retriever"]["ndcg"] == 0.5
metrics = eval_result.calculate_metrics(document_scope="context")
assert metrics["Retriever"]["mrr"] == 1.0
assert metrics["Retriever"]["map"] == pytest.approx(0.9167, 1e-4)
assert metrics["Retriever"]["recall_multi_hit"] == pytest.approx(0.9167, 1e-4)
assert metrics["Retriever"]["recall_single_hit"] == 1.0
assert metrics["Retriever"]["precision"] == 1.0
assert metrics["Retriever"]["ndcg"] == pytest.approx(0.9461, 1e-4)
metrics = eval_result.calculate_metrics(document_scope="document_id_and_context")
assert metrics["Retriever"]["mrr"] == 0.5
assert metrics["Retriever"]["map"] == 0.5
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
assert metrics["Retriever"]["recall_single_hit"] == 0.5
assert metrics["Retriever"]["precision"] == 0.1
assert metrics["Retriever"]["ndcg"] == 0.5
metrics = eval_result.calculate_metrics(document_scope="document_id_or_context")
assert metrics["Retriever"]["mrr"] == 1.0
assert metrics["Retriever"]["map"] == pytest.approx(0.9167, 1e-4)
assert metrics["Retriever"]["recall_multi_hit"] == pytest.approx(0.9167, 1e-4)
assert metrics["Retriever"]["recall_single_hit"] == 1.0
assert metrics["Retriever"]["precision"] == 1.0
assert metrics["Retriever"]["ndcg"] == pytest.approx(0.9461, 1e-4)
metrics = eval_result.calculate_metrics(document_scope="answer")
assert metrics["Retriever"]["mrr"] == 1.0
assert metrics["Retriever"]["map"] == 0.75
assert metrics["Retriever"]["recall_multi_hit"] == 0.75
assert metrics["Retriever"]["recall_single_hit"] == 1.0
assert metrics["Retriever"]["precision"] == 0.2
assert metrics["Retriever"]["ndcg"] == pytest.approx(0.8066, 1e-4)
metrics = eval_result.calculate_metrics(document_scope="document_id_or_answer")
assert metrics["Retriever"]["mrr"] == 1.0
assert metrics["Retriever"]["map"] == 0.75
assert metrics["Retriever"]["recall_multi_hit"] == 0.75
assert metrics["Retriever"]["recall_single_hit"] == 1.0
assert metrics["Retriever"]["precision"] == 0.2
assert metrics["Retriever"]["ndcg"] == pytest.approx(0.8066, 1e-4)
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
def test_extractive_qa_eval_answer_scope(reader, retriever_with_docs):
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval_batch(
labels=EVAL_LABELS,
params={"Retriever": {"top_k": 5}},
sas_model_name_or_path="sentence-transformers/paraphrase-MiniLM-L3-v2",
context_matching_min_length=20, # artificially set down min_length to see if context matching is working properly
)
metrics = eval_result.calculate_metrics(answer_scope="any")
assert metrics["Retriever"]["mrr"] == 1.0
assert metrics["Retriever"]["map"] == 0.75
assert metrics["Retriever"]["recall_multi_hit"] == 0.75
assert metrics["Retriever"]["recall_single_hit"] == 1.0
assert metrics["Retriever"]["precision"] == 0.2
assert metrics["Retriever"]["ndcg"] == pytest.approx(0.8066, 1e-4)
assert metrics["Reader"]["exact_match"] == 1.0
assert metrics["Reader"]["f1"] == 1.0
assert metrics["Reader"]["sas"] == pytest.approx(1.0)
metrics = eval_result.calculate_metrics(answer_scope="context")
assert metrics["Retriever"]["mrr"] == 1.0
assert metrics["Retriever"]["map"] == 0.75
assert metrics["Retriever"]["recall_multi_hit"] == 0.75
assert metrics["Retriever"]["recall_single_hit"] == 1.0
assert metrics["Retriever"]["precision"] == 0.2
assert metrics["Retriever"]["ndcg"] == pytest.approx(0.8066, 1e-4)
assert metrics["Reader"]["exact_match"] == 1.0
assert metrics["Reader"]["f1"] == 1.0
assert metrics["Reader"]["sas"] == pytest.approx(1.0)
metrics = eval_result.calculate_metrics(answer_scope="document_id")
assert metrics["Retriever"]["mrr"] == 0.5
assert metrics["Retriever"]["map"] == 0.5
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
assert metrics["Retriever"]["recall_single_hit"] == 0.5
assert metrics["Retriever"]["precision"] == 0.1
assert metrics["Retriever"]["ndcg"] == 0.5
assert metrics["Reader"]["exact_match"] == 0.5
assert metrics["Reader"]["f1"] == 0.5
assert metrics["Reader"]["sas"] == pytest.approx(0.5)
metrics = eval_result.calculate_metrics(answer_scope="document_id_and_context")
assert metrics["Retriever"]["mrr"] == 0.5
assert metrics["Retriever"]["map"] == 0.5
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
assert metrics["Retriever"]["recall_single_hit"] == 0.5
assert metrics["Retriever"]["precision"] == 0.1
assert metrics["Retriever"]["ndcg"] == 0.5
assert metrics["Reader"]["exact_match"] == 0.5
assert metrics["Reader"]["f1"] == 0.5
assert metrics["Reader"]["sas"] == pytest.approx(0.5)
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
def test_extractive_qa_eval_answer_document_scope_combinations(reader, retriever_with_docs, caplog):
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval_batch(
labels=EVAL_LABELS,
params={"Retriever": {"top_k": 5}},
sas_model_name_or_path="sentence-transformers/paraphrase-MiniLM-L3-v2",
context_matching_min_length=20, # artificially set down min_length to see if context matching is working properly
)
# valid values for non default answer_scopes
with caplog.at_level(logging.WARNING):
metrics = eval_result.calculate_metrics(document_scope="document_id_or_answer", answer_scope="context")
metrics = eval_result.calculate_metrics(document_scope="answer", answer_scope="context")
assert "You specified a non-answer document_scope together with a non-default answer_scope" not in caplog.text
with caplog.at_level(logging.WARNING):
metrics = eval_result.calculate_metrics(document_scope="document_id", answer_scope="context")
assert "You specified a non-answer document_scope together with a non-default answer_scope" in caplog.text
with caplog.at_level(logging.WARNING):
metrics = eval_result.calculate_metrics(document_scope="context", answer_scope="context")
assert "You specified a non-answer document_scope together with a non-default answer_scope" in caplog.text
with caplog.at_level(logging.WARNING):
metrics = eval_result.calculate_metrics(document_scope="document_id_and_context", answer_scope="context")
assert "You specified a non-answer document_scope together with a non-default answer_scope" in caplog.text
with caplog.at_level(logging.WARNING):
metrics = eval_result.calculate_metrics(document_scope="document_id_or_context", answer_scope="context")
assert "You specified a non-answer document_scope together with a non-default answer_scope" in caplog.text
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
def test_extractive_qa_eval_simulated_top_k_reader(reader, retriever_with_docs):
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval_batch(
labels=EVAL_LABELS,
params={"Retriever": {"top_k": 5}},
sas_model_name_or_path="sentence-transformers/paraphrase-MiniLM-L3-v2",
)
metrics_top_1 = eval_result.calculate_metrics(simulated_top_k_reader=1, document_scope="document_id")
assert metrics_top_1["Reader"]["exact_match"] == 0.5
assert metrics_top_1["Reader"]["f1"] == 0.5
assert metrics_top_1["Reader"]["sas"] == pytest.approx(0.5833, abs=1e-4)
assert metrics_top_1["Retriever"]["mrr"] == 0.5
assert metrics_top_1["Retriever"]["map"] == 0.5
assert metrics_top_1["Retriever"]["recall_multi_hit"] == 0.5
assert metrics_top_1["Retriever"]["recall_single_hit"] == 0.5
assert metrics_top_1["Retriever"]["precision"] == 0.1
assert metrics_top_1["Retriever"]["ndcg"] == 0.5
metrics_top_2 = eval_result.calculate_metrics(simulated_top_k_reader=2, document_scope="document_id")
assert metrics_top_2["Reader"]["exact_match"] == 0.5
assert metrics_top_2["Reader"]["f1"] == 0.5
assert metrics_top_2["Reader"]["sas"] == pytest.approx(0.5833, abs=1e-4)
assert metrics_top_2["Retriever"]["mrr"] == 0.5
assert metrics_top_2["Retriever"]["map"] == 0.5
assert metrics_top_2["Retriever"]["recall_multi_hit"] == 0.5
assert metrics_top_2["Retriever"]["recall_single_hit"] == 0.5
assert metrics_top_2["Retriever"]["precision"] == 0.1
assert metrics_top_2["Retriever"]["ndcg"] == 0.5
metrics_top_3 = eval_result.calculate_metrics(simulated_top_k_reader=3, document_scope="document_id")
assert metrics_top_3["Reader"]["exact_match"] == 1.0
assert metrics_top_3["Reader"]["f1"] == 1.0
assert metrics_top_3["Reader"]["sas"] == pytest.approx(1.0, abs=1e-4)
assert metrics_top_3["Retriever"]["mrr"] == 0.5
assert metrics_top_3["Retriever"]["map"] == 0.5
assert metrics_top_3["Retriever"]["recall_multi_hit"] == 0.5
assert metrics_top_3["Retriever"]["recall_single_hit"] == 0.5
assert metrics_top_3["Retriever"]["precision"] == 0.1
assert metrics_top_3["Retriever"]["ndcg"] == 0.5
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
def test_extractive_qa_eval_simulated_top_k_retriever(reader, retriever_with_docs):
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval_batch(labels=EVAL_LABELS, params={"Retriever": {"top_k": 5}})
metrics_top_10 = eval_result.calculate_metrics(document_scope="document_id")
assert metrics_top_10["Reader"]["exact_match"] == 1.0
assert metrics_top_10["Reader"]["f1"] == 1.0
assert metrics_top_10["Retriever"]["mrr"] == 0.5
assert metrics_top_10["Retriever"]["map"] == 0.5
assert metrics_top_10["Retriever"]["recall_multi_hit"] == 0.5
assert metrics_top_10["Retriever"]["recall_single_hit"] == 0.5
assert metrics_top_10["Retriever"]["precision"] == 0.1
assert metrics_top_10["Retriever"]["ndcg"] == 0.5
metrics_top_1 = eval_result.calculate_metrics(simulated_top_k_retriever=1, document_scope="document_id")
assert metrics_top_1["Reader"]["exact_match"] == 1.0
assert metrics_top_1["Reader"]["f1"] == 1.0
assert metrics_top_1["Retriever"]["mrr"] == 0.5
assert metrics_top_1["Retriever"]["map"] == 0.5
assert metrics_top_1["Retriever"]["recall_multi_hit"] == 0.5
assert metrics_top_1["Retriever"]["recall_single_hit"] == 0.5
assert metrics_top_1["Retriever"]["precision"] == 0.5
assert metrics_top_1["Retriever"]["ndcg"] == 0.5
metrics_top_2 = eval_result.calculate_metrics(simulated_top_k_retriever=2, document_scope="document_id")
assert metrics_top_2["Reader"]["exact_match"] == 1.0
assert metrics_top_2["Reader"]["f1"] == 1.0
assert metrics_top_2["Retriever"]["mrr"] == 0.5
assert metrics_top_2["Retriever"]["map"] == 0.5
assert metrics_top_2["Retriever"]["recall_multi_hit"] == 0.5
assert metrics_top_2["Retriever"]["recall_single_hit"] == 0.5
assert metrics_top_2["Retriever"]["precision"] == 0.25
assert metrics_top_2["Retriever"]["ndcg"] == 0.5
metrics_top_3 = eval_result.calculate_metrics(simulated_top_k_retriever=3, document_scope="document_id")
assert metrics_top_3["Reader"]["exact_match"] == 1.0
assert metrics_top_3["Reader"]["f1"] == 1.0
assert metrics_top_3["Retriever"]["mrr"] == 0.5
assert metrics_top_3["Retriever"]["map"] == 0.5
assert metrics_top_3["Retriever"]["recall_multi_hit"] == 0.5
assert metrics_top_3["Retriever"]["recall_single_hit"] == 0.5
assert metrics_top_3["Retriever"]["precision"] == 1.0 / 6
assert metrics_top_3["Retriever"]["ndcg"] == 0.5
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
def test_extractive_qa_eval_simulated_top_k_reader_and_retriever(reader, retriever_with_docs):
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval_batch(labels=EVAL_LABELS, params={"Retriever": {"top_k": 10}})
metrics_top_10 = eval_result.calculate_metrics(simulated_top_k_reader=1, document_scope="document_id")
assert metrics_top_10["Reader"]["exact_match"] == 0.5
assert metrics_top_10["Reader"]["f1"] == 0.5
assert metrics_top_10["Retriever"]["mrr"] == 0.5
assert metrics_top_10["Retriever"]["map"] == 0.5
assert metrics_top_10["Retriever"]["recall_multi_hit"] == 0.5
assert metrics_top_10["Retriever"]["recall_single_hit"] == 0.5
assert metrics_top_10["Retriever"]["precision"] == 0.1
assert metrics_top_10["Retriever"]["ndcg"] == 0.5
metrics_top_1 = eval_result.calculate_metrics(
simulated_top_k_reader=1, simulated_top_k_retriever=1, document_scope="document_id"
)
assert metrics_top_1["Reader"]["exact_match"] == 1.0
assert metrics_top_1["Reader"]["f1"] == 1.0
assert metrics_top_1["Retriever"]["mrr"] == 0.5
assert metrics_top_1["Retriever"]["map"] == 0.5
assert metrics_top_1["Retriever"]["recall_multi_hit"] == 0.5
assert metrics_top_1["Retriever"]["recall_single_hit"] == 0.5
assert metrics_top_1["Retriever"]["precision"] == 0.5
assert metrics_top_1["Retriever"]["ndcg"] == 0.5
metrics_top_2 = eval_result.calculate_metrics(
simulated_top_k_reader=1, simulated_top_k_retriever=2, document_scope="document_id"
)
assert metrics_top_2["Reader"]["exact_match"] == 0.5
assert metrics_top_2["Reader"]["f1"] == 0.5
assert metrics_top_2["Retriever"]["mrr"] == 0.5
assert metrics_top_2["Retriever"]["map"] == 0.5
assert metrics_top_2["Retriever"]["recall_multi_hit"] == 0.5
assert metrics_top_2["Retriever"]["recall_single_hit"] == 0.5
assert metrics_top_2["Retriever"]["precision"] == 0.25
assert metrics_top_2["Retriever"]["ndcg"] == 0.5
metrics_top_3 = eval_result.calculate_metrics(
simulated_top_k_reader=1, simulated_top_k_retriever=3, document_scope="document_id"
)
assert metrics_top_3["Reader"]["exact_match"] == 0.5
assert metrics_top_3["Reader"]["f1"] == 0.5
assert metrics_top_3["Retriever"]["mrr"] == 0.5
assert metrics_top_3["Retriever"]["map"] == 0.5
assert metrics_top_3["Retriever"]["recall_multi_hit"] == 0.5
assert metrics_top_3["Retriever"]["recall_single_hit"] == 0.5
assert metrics_top_3["Retriever"]["precision"] == 1.0 / 6
assert metrics_top_3["Retriever"]["ndcg"] == 0.5
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
def test_extractive_qa_eval_isolated(reader, retriever_with_docs):
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval_batch(
labels=EVAL_LABELS,
sas_model_name_or_path="sentence-transformers/paraphrase-MiniLM-L3-v2",
add_isolated_node_eval=True,
)
metrics_top_1 = eval_result.calculate_metrics(simulated_top_k_reader=1, document_scope="document_id")
assert metrics_top_1["Reader"]["exact_match"] == 0.5
assert metrics_top_1["Reader"]["f1"] == 0.5
assert metrics_top_1["Reader"]["sas"] == pytest.approx(0.5833, abs=1e-4)
assert metrics_top_1["Retriever"]["mrr"] == 0.5
assert metrics_top_1["Retriever"]["map"] == 0.5
assert metrics_top_1["Retriever"]["recall_multi_hit"] == 0.5
assert metrics_top_1["Retriever"]["recall_single_hit"] == 0.5
assert metrics_top_1["Retriever"]["precision"] == 1.0 / 10
assert metrics_top_1["Retriever"]["ndcg"] == 0.5
metrics_top_1 = eval_result.calculate_metrics(simulated_top_k_reader=1, eval_mode="isolated")
assert metrics_top_1["Reader"]["exact_match"] == 1.0
assert metrics_top_1["Reader"]["f1"] == 1.0
assert metrics_top_1["Reader"]["sas"] == pytest.approx(1.0, abs=1e-4)
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
def test_extractive_qa_eval_wrong_examples(reader, retriever_with_docs):
labels = [
MultiLabel(
labels=[
Label(
query="Who lives in Berlin?",
answer=Answer(answer="Carla", offsets_in_context=[Span(11, 16)]),
document=Document(
id="a0747b83aea0b60c4b114b15476dd32d",
content_type="text",
content="My name is Carla and I live in Berlin",
),
is_correct_answer=True,
is_correct_document=True,
origin="gold-label",
)
]
),
MultiLabel(
labels=[
Label(
query="Who lives in Munich?",
answer=Answer(answer="Pete", offsets_in_context=[Span(11, 16)]),
document=Document(
id="something_else", content_type="text", content="My name is Pete and I live in Munich"
),
is_correct_answer=True,
is_correct_document=True,
origin="gold-label",
)
]
),
]
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval_batch(labels=labels, params={"Retriever": {"top_k": 5}})
wrongs_retriever = eval_result.wrong_examples(node="Retriever", n=1)
wrongs_reader = eval_result.wrong_examples(node="Reader", n=1)
assert len(wrongs_retriever) == 1
assert len(wrongs_reader) == 1
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
def test_extractive_qa_print_eval_report(reader, retriever_with_docs):
labels = [
MultiLabel(
labels=[
Label(
query="Who lives in Berlin?",
answer=Answer(answer="Carla", offsets_in_context=[Span(11, 16)]),
document=Document(
id="a0747b83aea0b60c4b114b15476dd32d",
content_type="text",
content="My name is Carla and I live in Berlin",
),
is_correct_answer=True,
is_correct_document=True,
origin="gold-label",
)
]
),
MultiLabel(
labels=[
Label(
query="Who lives in Munich?",
answer=Answer(answer="Pete", offsets_in_context=[Span(11, 16)]),
document=Document(
id="something_else", content_type="text", content="My name is Pete and I live in Munich"
),
is_correct_answer=True,
is_correct_document=True,
origin="gold-label",
)
]
),
]
pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval_batch(labels=labels, params={"Retriever": {"top_k": 5}})
pipeline.print_eval_report(eval_result)
# in addition with labels as input to reader node rather than output of retriever node
eval_result: EvaluationResult = pipeline.eval_batch(
labels=labels, params={"Retriever": {"top_k": 5}}, add_isolated_node_eval=True
)
pipeline.print_eval_report(eval_result)
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
def test_document_search_calculate_metrics(retriever_with_docs):
pipeline = DocumentSearchPipeline(retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval_batch(labels=EVAL_LABELS, params={"Retriever": {"top_k": 5}})
metrics = eval_result.calculate_metrics(document_scope="document_id")
assert "Retriever" in eval_result
assert len(eval_result) == 1
retriever_result = eval_result["Retriever"]
retriever_berlin = retriever_result[retriever_result["query"] == "Who lives in Berlin?"]
retriever_munich = retriever_result[retriever_result["query"] == "Who lives in Munich?"]
assert (
retriever_berlin[retriever_berlin["rank"] == 1]["document_id"].iloc[0]
in retriever_berlin[retriever_berlin["rank"] == 1]["gold_document_ids"].iloc[0]
)
assert (
retriever_munich[retriever_munich["rank"] == 1]["document_id"].iloc[0]
not in retriever_munich[retriever_munich["rank"] == 1]["gold_document_ids"].iloc[0]
)
assert metrics["Retriever"]["mrr"] == 0.5
assert metrics["Retriever"]["map"] == 0.5
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
assert metrics["Retriever"]["recall_single_hit"] == 0.5
assert metrics["Retriever"]["precision"] == 0.1
assert metrics["Retriever"]["ndcg"] == 0.5
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
def test_faq_calculate_metrics(retriever_with_docs):
pipeline = FAQPipeline(retriever=retriever_with_docs)
eval_result: EvaluationResult = pipeline.eval_batch(labels=EVAL_LABELS, params={"Retriever": {"top_k": 5}})
metrics = eval_result.calculate_metrics(document_scope="document_id")
assert "Retriever" in eval_result
assert "Docs2Answers" in eval_result
assert len(eval_result) == 2
assert metrics["Retriever"]["mrr"] == 0.5
assert metrics["Retriever"]["map"] == 0.5
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
assert metrics["Retriever"]["recall_single_hit"] == 0.5
assert metrics["Retriever"]["precision"] == 0.1
assert metrics["Retriever"]["ndcg"] == 0.5
assert metrics["Docs2Answers"]["exact_match"] == 0.0
assert metrics["Docs2Answers"]["f1"] == 0.0
# Commented out because of the following issue https://github.com/deepset-ai/haystack/issues/2964
# @pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
# @pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
# @pytest.mark.parametrize("reader", ["farm"], indirect=True)
# def test_extractive_qa_eval_translation(reader, retriever_with_docs):
#
# # FIXME it makes no sense to have DE->EN input and DE->EN output, right?
# # Yet switching direction breaks the test. TO BE FIXED.
# input_translator = TransformersTranslator(model_name_or_path="Helsinki-NLP/opus-mt-de-en")
# output_translator = TransformersTranslator(model_name_or_path="Helsinki-NLP/opus-mt-de-en")
#
# pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs)
# pipeline = TranslationWrapperPipeline(
# input_translator=input_translator, output_translator=output_translator, pipeline=pipeline
# )
# eval_result: EvaluationResult = pipeline.eval_batch(labels=EVAL_LABELS, params={"Retriever": {"top_k": 5}})
#
# metrics = eval_result.calculate_metrics(document_scope="document_id")
#
# assert "Retriever" in eval_result
# assert "Reader" in eval_result
# assert "OutputTranslator" in eval_result
# assert len(eval_result) == 3
#
# assert metrics["Reader"]["exact_match"] == 1.0
# assert metrics["Reader"]["f1"] == 1.0
# assert metrics["Retriever"]["mrr"] == 0.5
# assert metrics["Retriever"]["map"] == 0.5
# assert metrics["Retriever"]["recall_multi_hit"] == 0.5
# assert metrics["Retriever"]["recall_single_hit"] == 0.5
# assert metrics["Retriever"]["precision"] == 0.1
# assert metrics["Retriever"]["ndcg"] == 0.5
#
# assert metrics["OutputTranslator"]["exact_match"] == 1.0
# assert metrics["OutputTranslator"]["f1"] == 1.0
# assert metrics["OutputTranslator"]["mrr"] == 0.5
# assert metrics["OutputTranslator"]["map"] == 0.5
# assert metrics["OutputTranslator"]["recall_multi_hit"] == 0.5
# assert metrics["OutputTranslator"]["recall_single_hit"] == 0.5
# assert metrics["OutputTranslator"]["precision"] == 0.1
# assert metrics["OutputTranslator"]["ndcg"] == 0.5
@pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True)
@pytest.mark.parametrize("document_store_with_docs", ["memory"], indirect=True)
def test_question_generation_eval(retriever_with_docs, question_generator):
pipeline = RetrieverQuestionGenerationPipeline(retriever=retriever_with_docs, question_generator=question_generator)
eval_result: EvaluationResult = pipeline.eval_batch(labels=EVAL_LABELS, params={"Retriever": {"top_k": 5}})
metrics = eval_result.calculate_metrics(document_scope="document_id")
assert "Retriever" in eval_result
assert "QuestionGenerator" in eval_result
assert len(eval_result) == 2
assert metrics["Retriever"]["mrr"] == 0.5
assert metrics["Retriever"]["map"] == 0.5
assert metrics["Retriever"]["recall_multi_hit"] == 0.5
assert metrics["Retriever"]["recall_single_hit"] == 0.5
assert metrics["Retriever"]["precision"] == 0.1
assert metrics["Retriever"]["ndcg"] == 0.5
assert metrics["QuestionGenerator"]["mrr"] == 0.5
assert metrics["QuestionGenerator"]["map"] == 0.5
assert metrics["QuestionGenerator"]["recall_multi_hit"] == 0.5
assert metrics["QuestionGenerator"]["recall_single_hit"] == 0.5
assert metrics["QuestionGenerator"]["precision"] == 0.1
assert metrics["QuestionGenerator"]["ndcg"] == 0.5
# Commented out because of the following issue https://github.com/deepset-ai/haystack/issues/2962
# @pytest.mark.parametrize("document_store_with_docs", ["elasticsearch"], indirect=True)
# @pytest.mark.parametrize("reader", ["farm"], indirect=True)
# def test_qa_multi_retriever_pipeline_eval(document_store_with_docs, reader):
# es_retriever = BM25Retriever(document_store=document_store_with_docs)
# dpr_retriever = DensePassageRetriever(document_store_with_docs)
# document_store_with_docs.update_embeddings(retriever=dpr_retriever)
#
# # QA Pipeline with two retrievers, we always want QA output
# pipeline = Pipeline()
# pipeline.add_node(component=TransformersQueryClassifier(), name="QueryClassifier", inputs=["Query"])
# pipeline.add_node(component=dpr_retriever, name="DPRRetriever", inputs=["QueryClassifier.output_1"])
# pipeline.add_node(component=es_retriever, name="ESRetriever", inputs=["QueryClassifier.output_2"])
# pipeline.add_node(component=reader, name="QAReader", inputs=["ESRetriever", "DPRRetriever"])
#
# # EVAL_QUERIES: 2 go dpr way
# # in Berlin goes es way
# labels = EVAL_LABELS + [
# MultiLabel(
# labels=[
# Label(
# query="in Berlin",
# answer=Answer(answer="Carla", offsets_in_context=[Span(11, 16)]),
# document=Document(
# id="a0747b83aea0b60c4b114b15476dd32d",
# content_type="text",
# content="My name is Carla and I live in Berlin",
# ),
# is_correct_answer=True,
# is_correct_document=True,
# origin="gold-label",
# )
# ]
# )
# ]
#
# eval_result: EvaluationResult = pipeline.eval_batch(
# labels=labels, params={"ESRetriever": {"top_k": 5}, "DPRRetriever": {"top_k": 5}}
# )
#
# metrics = eval_result.calculate_metrics(document_scope="document_id")
#
# assert "ESRetriever" in eval_result
# assert "DPRRetriever" in eval_result
# assert "QAReader" in eval_result
# assert len(eval_result) == 3
#
# assert metrics["DPRRetriever"]["mrr"] == 0.5
# assert metrics["DPRRetriever"]["map"] == 0.5
# assert metrics["DPRRetriever"]["recall_multi_hit"] == 0.5
# assert metrics["DPRRetriever"]["recall_single_hit"] == 0.5
# assert metrics["DPRRetriever"]["precision"] == 0.1
# assert metrics["DPRRetriever"]["ndcg"] == 0.5
#
# assert metrics["ESRetriever"]["mrr"] == 1.0
# assert metrics["ESRetriever"]["map"] == 1.0
# assert metrics["ESRetriever"]["recall_multi_hit"] == 1.0
# assert metrics["ESRetriever"]["recall_single_hit"] == 1.0
# assert metrics["ESRetriever"]["precision"] == 0.2
# assert metrics["ESRetriever"]["ndcg"] == 1.0
#
# assert metrics["QAReader"]["exact_match"] == 1.0
# assert metrics["QAReader"]["f1"] == 1.0
# Commented out because of the following issue https://github.com/deepset-ai/haystack/issues/2962
# @pytest.mark.parametrize("document_store_with_docs", ["elasticsearch"], indirect=True)
# def test_multi_retriever_pipeline_eval(document_store_with_docs):
# es_retriever = BM25Retriever(document_store=document_store_with_docs)
# dpr_retriever = DensePassageRetriever(document_store_with_docs)
# document_store_with_docs.update_embeddings(retriever=dpr_retriever)
#
# # QA Pipeline with two retrievers, no QA output
# pipeline = Pipeline()
# pipeline.add_node(component=TransformersQueryClassifier(), name="QueryClassifier", inputs=["Query"])
# pipeline.add_node(component=dpr_retriever, name="DPRRetriever", inputs=["QueryClassifier.output_1"])
# pipeline.add_node(component=es_retriever, name="ESRetriever", inputs=["QueryClassifier.output_2"])
#
# # EVAL_QUERIES: 2 go dpr way
# # in Berlin goes es way
# labels = EVAL_LABELS + [
# MultiLabel(
# labels=[
# Label(
# query="in Berlin",
# answer=None,
# document=Document(
# id="a0747b83aea0b60c4b114b15476dd32d",
# content_type="text",
# content="My name is Carla and I live in Berlin",
# ),
# is_correct_answer=True,
# is_correct_document=True,
# origin="gold-label",
# )
# ]
# )
# ]
#
# eval_result: EvaluationResult = pipeline.eval_batch(
# labels=labels, params={"ESRetriever": {"top_k": 5}, "DPRRetriever": {"top_k": 5}}
# )
#
# metrics = eval_result.calculate_metrics(document_scope="document_id")
#
# assert "ESRetriever" in eval_result
# assert "DPRRetriever" in eval_result
# assert len(eval_result) == 2
#
# assert metrics["DPRRetriever"]["mrr"] == 0.5
# assert metrics["DPRRetriever"]["map"] == 0.5
# assert metrics["DPRRetriever"]["recall_multi_hit"] == 0.5
# assert metrics["DPRRetriever"]["recall_single_hit"] == 0.5
# assert metrics["DPRRetriever"]["precision"] == 0.1
# assert metrics["DPRRetriever"]["ndcg"] == 0.5
#
# assert metrics["ESRetriever"]["mrr"] == 1.0
# assert metrics["ESRetriever"]["map"] == 1.0
# assert metrics["ESRetriever"]["recall_multi_hit"] == 1.0
# assert metrics["ESRetriever"]["recall_single_hit"] == 1.0
# assert metrics["ESRetriever"]["precision"] == 0.2
# assert metrics["ESRetriever"]["ndcg"] == 1.0
# Commented out because of the following issue https://github.com/deepset-ai/haystack/issues/2962
# @pytest.mark.parametrize("document_store_with_docs", ["elasticsearch"], indirect=True)
# @pytest.mark.parametrize("reader", ["farm"], indirect=True)
# def test_multi_retriever_pipeline_with_asymmetric_qa_eval(document_store_with_docs, reader):
# es_retriever = BM25Retriever(document_store=document_store_with_docs)
# dpr_retriever = DensePassageRetriever(document_store_with_docs)
# document_store_with_docs.update_embeddings(retriever=dpr_retriever)
#
# # QA Pipeline with two retrievers, we only get QA output from dpr
# pipeline = Pipeline()
# pipeline.add_node(component=TransformersQueryClassifier(), name="QueryClassifier", inputs=["Query"])
# pipeline.add_node(component=dpr_retriever, name="DPRRetriever", inputs=["QueryClassifier.output_1"])
# pipeline.add_node(component=es_retriever, name="ESRetriever", inputs=["QueryClassifier.output_2"])
# pipeline.add_node(component=reader, name="QAReader", inputs=["DPRRetriever"])
#
# # EVAL_QUERIES: 2 go dpr way
# # in Berlin goes es way
# labels = EVAL_LABELS + [
# MultiLabel(
# labels=[
# Label(
# query="in Berlin",
# answer=None,
# document=Document(
# id="a0747b83aea0b60c4b114b15476dd32d",
# content_type="text",
# content="My name is Carla and I live in Berlin",
# ),
# is_correct_answer=True,
# is_correct_document=True,
# origin="gold-label",
# )
# ]
# )
# ]
#
# eval_result: EvaluationResult = pipeline.eval_batch(
# labels=labels, params={"ESRetriever": {"top_k": 5}, "DPRRetriever": {"top_k": 5}}
# )
#
# metrics = eval_result.calculate_metrics(document_scope="document_id")
#
# assert "ESRetriever" in eval_result
# assert "DPRRetriever" in eval_result
# assert "QAReader" in eval_result
# assert len(eval_result) == 3
#
# assert metrics["DPRRetriever"]["mrr"] == 0.5
# assert metrics["DPRRetriever"]["map"] == 0.5
# assert metrics["DPRRetriever"]["recall_multi_hit"] == 0.5
# assert metrics["DPRRetriever"]["recall_single_hit"] == 0.5
# assert metrics["DPRRetriever"]["precision"] == 0.1
# assert metrics["DPRRetriever"]["ndcg"] == 0.5
#
# assert metrics["ESRetriever"]["mrr"] == 1.0
# assert metrics["ESRetriever"]["map"] == 1.0
# assert metrics["ESRetriever"]["recall_multi_hit"] == 1.0
# assert metrics["ESRetriever"]["recall_single_hit"] == 1.0
# assert metrics["ESRetriever"]["precision"] == 0.2
# assert metrics["ESRetriever"]["ndcg"] == 1.0
#
# assert metrics["QAReader"]["exact_match"] == 1.0
# assert metrics["QAReader"]["f1"] == 1.0