haystack/test/test_modeling_processor_saving_loading.py

48 lines
1.5 KiB
Python
Raw Normal View History

import logging
from pathlib import Path
from haystack.modeling.data_handler.processor import SquadProcessor
from haystack.modeling.model.tokenization import Tokenizer
from haystack.modeling.utils import set_all_seeds
import torch
from conftest import SAMPLES_PATH
def test_processor_saving_loading(caplog):
if caplog is not None:
caplog.set_level(logging.CRITICAL)
set_all_seeds(seed=42)
lang_model = "roberta-base"
tokenizer = Tokenizer.load(pretrained_model_name_or_path=lang_model, do_lower_case=False)
processor = SquadProcessor(
tokenizer=tokenizer,
max_seq_len=256,
label_list=["start_token", "end_token"],
2021-09-09 13:02:35 +02:00
train_filename="train-sample.json",
dev_filename="dev-sample.json",
test_filename=None,
data_dir=SAMPLES_PATH / "qa",
)
dicts = processor.file_to_dicts(file=SAMPLES_PATH / "qa" / "dev-sample.json")
data, tensor_names, _ = processor.dataset_from_dicts(dicts=dicts, indices=[1])
save_dir = Path("testsave/processor")
processor.save(save_dir)
processor = processor.load_from_dir(save_dir)
dicts = processor.file_to_dicts(file=SAMPLES_PATH / "qa" / "dev-sample.json")
data_loaded, tensor_names_loaded, _ = processor.dataset_from_dicts(dicts, indices=[1])
assert tensor_names == tensor_names_loaded
for i in range(len(data.tensors)):
assert torch.all(torch.eq(data.tensors[i], data_loaded.tensors[i]))
if __name__ == "__main__":
test_processor_saving_loading(None)