haystack/test/nodes/test_web_retriever.py

313 lines
11 KiB
Python
Raw Normal View History

import os
from unittest.mock import MagicMock, patch, Mock
from test.conftest import MockDocumentStore
import pytest
from haystack import Document, Pipeline
from haystack.document_stores.base import BaseDocumentStore
from haystack.nodes import WebRetriever, PromptNode
from haystack.nodes.retriever.link_content import html_content_handler
from haystack.nodes.preprocessor import PreProcessor
from haystack.nodes.retriever.web import SearchResult
from test.nodes.conftest import example_serperdev_response
@pytest.fixture
def mocked_requests():
with patch("haystack.nodes.retriever.link_content.requests") as mock_requests:
mock_response = Mock()
mock_requests.get.return_value = mock_response
mock_response.status_code = 200
mock_response.text = "Sample content from webpage"
yield mock_requests
@pytest.fixture
def mocked_article_extractor():
with patch("boilerpy3.extractors.ArticleExtractor.get_content", return_value="Sample content from webpage"):
yield
@pytest.fixture
def mocked_link_content_fetcher_handler_type():
with patch(
"haystack.nodes.retriever.link_content.LinkContentFetcher._get_content_type_handler",
return_value=html_content_handler,
):
yield
@pytest.mark.unit
def test_init_default_parameters():
retriever = WebRetriever(api_key="test_key")
assert retriever.top_k == 5
assert retriever.mode == "snippets"
assert retriever.preprocessor is None
assert retriever.cache_document_store is None
assert retriever.cache_index is None
assert retriever.cache_headers is None
assert retriever.cache_time == 1 * 24 * 60 * 60
@pytest.mark.unit
def test_init_custom_parameters():
preprocessor = PreProcessor()
document_store = MagicMock(spec=BaseDocumentStore)
headers = {"Test": "Header"}
retriever = WebRetriever(
api_key="test_key",
search_engine_provider="SerperDev",
top_search_results=15,
top_k=7,
mode="preprocessed_documents",
preprocessor=preprocessor,
cache_document_store=document_store,
cache_index="custom_index",
cache_headers=headers,
cache_time=2 * 24 * 60 * 60,
)
assert retriever.top_k == 7
assert retriever.mode == "preprocessed_documents"
assert retriever.preprocessor == preprocessor
assert retriever.cache_document_store == document_store
assert retriever.cache_index == "custom_index"
assert retriever.cache_headers == headers
assert retriever.cache_time == 2 * 24 * 60 * 60
@pytest.mark.unit
def test_retrieve_from_web_all_params(mock_web_search):
wr = WebRetriever(api_key="fake_key")
preprocessor = PreProcessor()
result = wr._retrieve_from_web(query_norm="who is the boyfriend of olivia wilde?", preprocessor=preprocessor)
assert isinstance(result, list)
assert all(isinstance(doc, Document) for doc in result)
assert len(result) == len(example_serperdev_response["organic"])
@pytest.mark.unit
def test_retrieve_from_web_no_preprocessor(mock_web_search):
# tests that we get top_k results when no PreProcessor is provided
wr = WebRetriever(api_key="fake_key")
result = wr._retrieve_from_web("query", None)
assert isinstance(result, list)
assert all(isinstance(doc, Document) for doc in result)
assert len(result) == len(example_serperdev_response["organic"])
@pytest.mark.unit
def test_retrieve_from_web_invalid_query(mock_web_search):
# however, if query is None or empty, we expect an error
wr = WebRetriever(api_key="fake_key")
with pytest.raises(ValueError, match="WebSearch run requires"):
wr._retrieve_from_web("", None)
with pytest.raises(ValueError, match="WebSearch run requires"):
wr._retrieve_from_web(None, None)
@pytest.mark.unit
def test_prepare_links_empty_list():
wr = WebRetriever(api_key="fake_key")
result = wr._prepare_links([])
assert result == []
result = wr._prepare_links(None)
assert result == []
@pytest.mark.unit
def test_scrape_links_empty_list():
wr = WebRetriever(api_key="fake_key")
result = wr._scrape_links([], "query", None)
assert result == []
@pytest.mark.unit
def test_scrape_links_with_search_results(
mocked_requests, mocked_article_extractor, mocked_link_content_fetcher_handler_type
):
wr = WebRetriever(api_key="fake_key")
sr1 = SearchResult("https://pagesix.com", "Some text", "0.43", "1")
sr2 = SearchResult("https://www.yahoo.com/", "Some text", "0.43", "2")
fake_search_results = [sr1, sr2]
result = wr._scrape_links(fake_search_results, "query", None)
assert isinstance(result, list)
assert all(isinstance(r, Document) for r in result)
assert len(result) == 2
@pytest.mark.unit
def test_scrape_links_with_search_results_with_preprocessor(
mocked_requests, mocked_article_extractor, mocked_link_content_fetcher_handler_type
):
wr = WebRetriever(api_key="fake_key", mode="preprocessed_documents")
preprocessor = PreProcessor(progress_bar=False)
sr1 = SearchResult("https://pagesix.com", "Some text", "0.43", "1")
sr2 = SearchResult("https://www.yahoo.com/", "Some text", "0.43", "2")
fake_search_results = [sr1, sr2]
result = wr._scrape_links(fake_search_results, "query", preprocessor)
assert isinstance(result, list)
assert all(isinstance(r, Document) for r in result)
# the documents from above SearchResult are so small that they will not be split into multiple documents
# by the preprocessor
assert len(result) == 2
@pytest.mark.unit
def test_retrieve_uses_defaults():
wr = WebRetriever(api_key="fake_key")
with patch.object(wr, "_check_cache", return_value=[]) as mock_check_cache:
with patch.object(wr, "_retrieve_from_web", return_value=[]) as mock_retrieve_from_web:
wr.retrieve("query")
# cache is checked first, always
mock_check_cache.assert_called_with(
"query", cache_index=wr.cache_index, cache_headers=wr.cache_headers, cache_time=wr.cache_time
)
mock_retrieve_from_web.assert_called_with("query", wr.preprocessor)
@pytest.mark.unit
def test_retrieve_batch():
queries = ["query1", "query2"]
wr = WebRetriever(api_key="fake_key")
web_docs = [Document("doc1"), Document("doc2"), Document("doc3")]
with patch.object(wr, "_check_cache", return_value=[]) as mock_check_cache:
with patch.object(wr, "_retrieve_from_web", return_value=web_docs) as mock_retrieve_from_web:
result = wr.retrieve_batch(queries)
assert mock_check_cache.call_count == len(queries)
assert mock_retrieve_from_web.call_count == len(queries)
# check that the result is a list of lists of Documents
# where each list of Documents is the result of a single query
assert len(result) == len(queries)
# check that the result is a list of lists of Documents
assert all(isinstance(docs, list) for docs in result)
assert all(isinstance(doc, Document) for docs in result for doc in docs)
# check that the result is a list of lists of Documents, so that the number of Documents
# is equal to the number of queries * number of documents retrieved per query
assert len([doc for docs in result for doc in docs]) == len(web_docs) * len(queries)
@pytest.mark.unit
def test_retrieve_uses_cache():
wr = WebRetriever(api_key="fake_key")
cached_docs = [Document("doc1"), Document("doc2")]
with patch.object(wr, "_check_cache", return_value=cached_docs) as mock_check_cache:
with patch.object(wr, "_retrieve_from_web") as mock_retrieve_from_web:
with patch.object(wr, "_save_cache") as mock_save_cache:
result = wr.retrieve("query")
# checking cache is always called
mock_check_cache.assert_called()
# these methods are not called because we found docs in cache
mock_retrieve_from_web.assert_not_called()
mock_save_cache.assert_not_called()
assert result == cached_docs
@pytest.mark.unit
def test_retrieve_saves_to_cache():
wr = WebRetriever(api_key="fake_key", cache_document_store=MockDocumentStore())
web_docs = [Document("doc1"), Document("doc2"), Document("doc3")]
with patch.object(wr, "_check_cache", return_value=[]) as mock_check_cache:
with patch.object(wr, "_retrieve_from_web", return_value=web_docs) as mock_retrieve_from_web:
with patch.object(wr, "_save_cache") as mock_save_cache:
result = wr.retrieve("query")
mock_check_cache.assert_called()
# cache is empty, so we call _retrieve_from_web
mock_retrieve_from_web.assert_called()
# and save the results to cache
mock_save_cache.assert_called_with("query", web_docs, cache_index=wr.cache_index, cache_headers=wr.cache_headers)
assert result == web_docs
@pytest.mark.unit
def test_retrieve_returns_top_k():
wr = WebRetriever(api_key="", top_k=2)
with patch.object(wr, "_check_cache", return_value=[]):
web_docs = [Document("doc1"), Document("doc2"), Document("doc3")]
with patch.object(wr, "_retrieve_from_web", return_value=web_docs):
result = wr.retrieve("query")
assert result == web_docs[:2]
@pytest.mark.unit
@pytest.mark.parametrize("top_k", [1, 3, 6])
def test_top_k_parameter(mock_web_search, top_k):
web_retriever = WebRetriever(api_key="some_invalid_key", mode="snippets")
result = web_retriever.retrieve(query="Who is the boyfriend of Olivia Wilde?", top_k=top_k)
assert len(result) == top_k
assert all(isinstance(doc, Document) for doc in result)
@pytest.mark.integration
@pytest.mark.skipif(
not os.environ.get("SERPERDEV_API_KEY", None),
reason="Please export an env var called SERPERDEV_API_KEY containing the serper.dev API key to run this test.",
)
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Please export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
@pytest.mark.parametrize("top_k", [2, 4])
def test_top_k_parameter_in_pipeline(top_k):
# test that WebRetriever top_k param is NOT ignored in a pipeline
prompt_node = PromptNode(
"gpt-3.5-turbo",
api_key=os.environ.get("OPENAI_API_KEY"),
max_length=256,
default_prompt_template="question-answering-with-document-scores",
)
retriever = WebRetriever(api_key=os.environ.get("SERPERDEV_API_KEY"))
pipe = Pipeline()
pipe.add_node(component=retriever, name="WebRetriever", inputs=["Query"])
pipe.add_node(component=prompt_node, name="QAwithScoresPrompt", inputs=["WebRetriever"])
result = pipe.run(query="What year was Obama president", params={"WebRetriever": {"top_k": top_k}})
assert len(result["results"]) == top_k
@pytest.mark.integration
@pytest.mark.skipif(
not os.environ.get("SERPERDEV_API_KEY", None),
reason="Please export an env var called SERPERDEV_API_KEY containing the serper.dev API key to run this test.",
)
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Please export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
@pytest.mark.skip
def test_web_retriever_speed():
retriever = WebRetriever(api_key=os.environ.get("SERPERDEV_API_KEY"), mode="preprocessed_documents")
result = retriever.retrieve(query="What's the meaning of it all?")
assert len(result) >= 5
assert all(isinstance(doc, Document) for doc in result)