haystack/test/components/embedders/test_openai_document_embedder.py

206 lines
7.9 KiB
Python
Raw Normal View History

# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
#
# SPDX-License-Identifier: Apache-2.0
import os
from typing import List
from haystack.utils.auth import Secret
import numpy as np
import pytest
2023-11-24 14:48:43 +01:00
from haystack import Document
from haystack.components.embedders.openai_document_embedder import OpenAIDocumentEmbedder
def mock_openai_response(input: List[str], model: str = "text-embedding-ada-002", **kwargs) -> dict:
dict_response = {
"object": "list",
"data": [
{"object": "embedding", "index": i, "embedding": np.random.rand(1536).tolist()} for i in range(len(input))
],
"model": model,
"usage": {"prompt_tokens": 4, "total_tokens": 4},
}
return dict_response
class TestOpenAIDocumentEmbedder:
def test_init_default(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "fake-api-key")
embedder = OpenAIDocumentEmbedder()
assert embedder.model == "text-embedding-ada-002"
assert embedder.organization is None
assert embedder.prefix == ""
assert embedder.suffix == ""
assert embedder.batch_size == 32
assert embedder.progress_bar is True
assert embedder.meta_fields_to_embed == []
assert embedder.embedding_separator == "\n"
def test_init_with_parameters(self):
embedder = OpenAIDocumentEmbedder(
api_key=Secret.from_token("fake-api-key"),
model="model",
organization="my-org",
prefix="prefix",
suffix="suffix",
batch_size=64,
progress_bar=False,
meta_fields_to_embed=["test_field"],
embedding_separator=" | ",
)
assert embedder.organization == "my-org"
assert embedder.model == "model"
assert embedder.prefix == "prefix"
assert embedder.suffix == "suffix"
assert embedder.batch_size == 64
assert embedder.progress_bar is False
assert embedder.meta_fields_to_embed == ["test_field"]
assert embedder.embedding_separator == " | "
def test_init_fail_wo_api_key(self, monkeypatch):
monkeypatch.delenv("OPENAI_API_KEY", raising=False)
with pytest.raises(ValueError, match="None of the .* environment variables are set"):
OpenAIDocumentEmbedder()
def test_to_dict(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "fake-api-key")
component = OpenAIDocumentEmbedder()
data = component.to_dict()
assert data == {
2023-11-24 14:48:43 +01:00
"type": "haystack.components.embedders.openai_document_embedder.OpenAIDocumentEmbedder",
"init_parameters": {
"api_key": {"env_vars": ["OPENAI_API_KEY"], "strict": True, "type": "env_var"},
"api_base_url": None,
"model": "text-embedding-ada-002",
"dimensions": None,
"organization": None,
"prefix": "",
"suffix": "",
"batch_size": 32,
"progress_bar": True,
"meta_fields_to_embed": [],
"embedding_separator": "\n",
},
}
def test_to_dict_with_custom_init_parameters(self, monkeypatch):
monkeypatch.setenv("ENV_VAR", "fake-api-key")
component = OpenAIDocumentEmbedder(
api_key=Secret.from_env_var("ENV_VAR", strict=False),
model="model",
organization="my-org",
prefix="prefix",
suffix="suffix",
batch_size=64,
progress_bar=False,
meta_fields_to_embed=["test_field"],
embedding_separator=" | ",
)
data = component.to_dict()
assert data == {
2023-11-24 14:48:43 +01:00
"type": "haystack.components.embedders.openai_document_embedder.OpenAIDocumentEmbedder",
"init_parameters": {
"api_key": {"env_vars": ["ENV_VAR"], "strict": False, "type": "env_var"},
"api_base_url": None,
"model": "model",
"dimensions": None,
"organization": "my-org",
"prefix": "prefix",
"suffix": "suffix",
"batch_size": 64,
"progress_bar": False,
"meta_fields_to_embed": ["test_field"],
"embedding_separator": " | ",
},
}
def test_prepare_texts_to_embed_w_metadata(self):
documents = [
Document(content=f"document number {i}:\ncontent", meta={"meta_field": f"meta_value {i}"}) for i in range(5)
]
embedder = OpenAIDocumentEmbedder(
api_key=Secret.from_token("fake-api-key"), meta_fields_to_embed=["meta_field"], embedding_separator=" | "
)
prepared_texts = embedder._prepare_texts_to_embed(documents)
# note that newline is replaced by space
assert prepared_texts == [
"meta_value 0 | document number 0: content",
"meta_value 1 | document number 1: content",
"meta_value 2 | document number 2: content",
"meta_value 3 | document number 3: content",
"meta_value 4 | document number 4: content",
]
def test_prepare_texts_to_embed_w_suffix(self):
documents = [Document(content=f"document number {i}") for i in range(5)]
embedder = OpenAIDocumentEmbedder(
api_key=Secret.from_token("fake-api-key"), prefix="my_prefix ", suffix=" my_suffix"
)
prepared_texts = embedder._prepare_texts_to_embed(documents)
assert prepared_texts == [
"my_prefix document number 0 my_suffix",
"my_prefix document number 1 my_suffix",
"my_prefix document number 2 my_suffix",
"my_prefix document number 3 my_suffix",
"my_prefix document number 4 my_suffix",
]
def test_run_wrong_input_format(self):
embedder = OpenAIDocumentEmbedder(api_key=Secret.from_token("fake-api-key"))
# wrong formats
string_input = "text"
list_integers_input = [1, 2, 3]
with pytest.raises(TypeError, match="OpenAIDocumentEmbedder expects a list of Documents as input"):
embedder.run(documents=string_input)
with pytest.raises(TypeError, match="OpenAIDocumentEmbedder expects a list of Documents as input"):
embedder.run(documents=list_integers_input)
def test_run_on_empty_list(self):
embedder = OpenAIDocumentEmbedder(api_key=Secret.from_token("fake-api-key"))
empty_list_input = []
result = embedder.run(documents=empty_list_input)
assert result["documents"] is not None
assert not result["documents"] # empty list
2024-01-08 19:19:14 +01:00
@pytest.mark.skipif(os.environ.get("OPENAI_API_KEY", "") == "", reason="OPENAI_API_KEY is not set")
@pytest.mark.integration
def test_run(self):
docs = [
Document(content="I love cheese", meta={"topic": "Cuisine"}),
Document(content="A transformer is a deep learning architecture", meta={"topic": "ML"}),
]
model = "text-embedding-ada-002"
embedder = OpenAIDocumentEmbedder(model=model, meta_fields_to_embed=["topic"], embedding_separator=" | ")
result = embedder.run(documents=docs)
documents_with_embeddings = result["documents"]
assert isinstance(documents_with_embeddings, list)
assert len(documents_with_embeddings) == len(docs)
for doc in documents_with_embeddings:
assert isinstance(doc, Document)
assert isinstance(doc.embedding, list)
assert len(doc.embedding) == 1536
assert all(isinstance(x, float) for x in doc.embedding)
assert (
"text" in result["meta"]["model"] and "ada" in result["meta"]["model"]
), "The model name does not contain 'text' and 'ada'"
assert result["meta"]["usage"] == {"prompt_tokens": 15, "total_tokens": 15}, "Usage information does not match"