haystack/tutorials/Tutorial17_Audio.py

233 lines
12 KiB
Python
Raw Normal View History

`AnswerToSpeech` (#2584) * Add new audio answer primitives * Add AnswerToSpeech * Add dependency group * Update Documentation & Code Style * Extract TextToSpeech in a helper class, create DocumentToSpeech and primitives * Add tests * Update Documentation & Code Style * Add ability to compress audio and more tests * Add audio group to test, all and all-gpu * fix pylint * Update Documentation & Code Style * Accidental git tag * Try pleasing mypy * Update Documentation & Code Style * fix pylint * Add warning for missing OS library and support in CI * Try fixing mypy * Update Documentation & Code Style * Add docs, simplify args for audio nodes and add tutorials * Fix mypy * Fix run_batch * Feedback on tutorials * fix mypy and pylint * Fix mypy again * Fix mypy yet again * Fix the ci * Fix dicts merge and install ffmpeg on CI * Make the audio nodes import safe * Trying to increase tolerance in audio test * Fix import paths * fix linter * Update Documentation & Code Style * Add audio libs in unit tests * Update _text_to_speech.py * Update answer_to_speech.py * Use dedicated dataset & update telemetry * Remove and use distilled roberta * Revert special primitives so that the nodes run in indexing * Improve tutorials and fix smaller bugs * Update Documentation & Code Style * Fix serialization issue * Update Documentation & Code Style * Improve tutorial * Update Documentation & Code Style * Update _text_to_speech.py * Minor lg updates * Minor lg updates to tutorial * Making indexing work in tutorials * Update Documentation & Code Style * Improve docstrings * Try to use GPU when available * Update Documentation & Code Style * Fixi mypy and pylint * Try to pass the device correctly * Update Documentation & Code Style * Use type of device * use .cpu() * Improve .ipynb * update apt index to be able to download libsndfile1 * Fix SpeechDocument.from_dict() * Change pip URL Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: Agnieszka Marzec <97166305+agnieszka-m@users.noreply.github.com>
2022-06-15 10:13:18 +02:00
# ## Make Your QA Pipelines Talk!
#
# Question answering works primarily on text, but Haystack provides some features for
# audio files that contain speech as well.
#
# In this tutorial, we're going to see how to use `AnswerToSpeech` to convert answers
# into audio files.
#
from haystack.document_stores import ElasticsearchDocumentStore
from haystack.utils import fetch_archive_from_http, launch_es, print_answers
from haystack.nodes import FARMReader, BM25Retriever
from pprint import pprint
from pathlib import Path
from haystack import Pipeline
from haystack.nodes import FileTypeClassifier, TextConverter, PreProcessor, AnswerToSpeech, DocumentToSpeech
def tutorial17_audio_features():
############################################################################################
#
# ## Part 1: INDEXING
#
# First of all, we create a pipeline that populates the document store. See Tutorial 1 for more details about these steps.
#
# To the basic version, we can add here a DocumentToSpeech node that also generates an audio file for each of the
# indexed documents. During querying, this will make it easier, to access the audio version of the documents the answers
# were extracted from.
# Connect to Elasticsearch
launch_es(sleep=30)
document_store = ElasticsearchDocumentStore(host="localhost", username="", password="", index="document")
# Get the documents
documents_path = "data/tutorial17"
s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/wiki_gameofthrones_txt17.zip"
fetch_archive_from_http(url=s3_url, output_dir=documents_path)
# List all the paths
file_paths = [p for p in Path(documents_path).glob("**/*")]
# Note: In this example, we're going to use only one text file from the wiki, as the DocumentToSpeech node is relatively slow
# on CPU machines. Comment out this line to use all documents from the dataset if you machine is powerful enough.
file_paths = [p for p in file_paths if "Arya_Stark" in p.name]
# Prepare some basic metadata for the files
files_metadata = [{"name": path.name} for path in file_paths]
# Here we create a basic indexing pipeline
indexing_pipeline = Pipeline()
# - Makes sure the file is a TXT file (FileTypeClassifier node)
classifier = FileTypeClassifier()
indexing_pipeline.add_node(classifier, name="classifier", inputs=["File"])
# - Converts a file into text and performs basic cleaning (TextConverter node)
text_converter = TextConverter(remove_numeric_tables=True)
indexing_pipeline.add_node(text_converter, name="text_converter", inputs=["classifier.output_1"])
# - Pre-processes the text by performing splits and adding metadata to the text (PreProcessor node)
preprocessor = PreProcessor(
clean_whitespace=True,
clean_empty_lines=True,
split_length=100,
split_overlap=50,
split_respect_sentence_boundary=True,
)
indexing_pipeline.add_node(preprocessor, name="preprocessor", inputs=["text_converter"])
#
# DocumentToSpeech
#
# Here is where we convert all documents to be indexed into SpeechDocuments, that will hold not only
# the text content, but also their audio version.
doc2speech = DocumentToSpeech(
model_name_or_path="espnet/kan-bayashi_ljspeech_vits", generated_audio_dir=Path("./generated_audio_documents")
)
indexing_pipeline.add_node(doc2speech, name="doc2speech", inputs=["preprocessor"])
# - Writes the resulting documents into the document store (ElasticsearchDocumentStore node from the previous cell)
indexing_pipeline.add_node(document_store, name="document_store", inputs=["doc2speech"])
# Then we run it with the documents and their metadata as input
indexing_pipeline.run(file_paths=file_paths, meta=files_metadata)
# You can now check the document store and verify that documents have been enriched with a path
# to the generated audio file
document = next(document_store.get_all_documents_generator())
pprint(document)
# Sample output:
#
# <Document: {
# 'content': "\n\n'''Arya Stark''' is a fictional character in American author George R. R. Martin's ''A Song of Ice and Fire'' epic fantasy novel series.
# She is a prominent point of view character in the novels with the third most viewpoint chapters, and is the only viewpoint character to have appeared in every published
# book of the series. Introduced in 1996's ''A Game of Thrones'', Arya is the third child and younger daughter of Lord Eddard Stark and his wife Lady Catelyn Stark. She is tomboyish,
# headstrong, feisty, independent, disdains traditional female pursuits, and is often mistaken for a boy.",
# 'content_type': 'audio',
# 'score': None,
# 'meta': {
# 'content_audio': './generated_audio_documents/f218707624d9c4f9487f508e4603bf5b.wav',
# '__initialised__': True,
# 'type': 'generative',
# '_split_id': 0,
# 'audio_format': 'wav',
# 'sample_rate': 22050,
# 'name': '43_Arya_Stark.txt'},
# 'embedding': None,
# 'id': '2733e698301f8f94eb70430b874177fd'
# }>
############################################################################################
#
# ## Part 2: QUERYING
#
# Now we will create a pipeline very similar to the basic ExtractiveQAPipeline of Tutorial 1,
# with the addition of a node that converts our answers into audio files!
retriever = BM25Retriever(document_store=document_store)
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2-distilled", use_gpu=True)
answer2speech = AnswerToSpeech(
model_name_or_path="espnet/kan-bayashi_ljspeech_vits",
generated_audio_dir=Path(__file__).parent / "audio_answers",
)
audio_pipeline = Pipeline()
audio_pipeline.add_node(retriever, name="Retriever", inputs=["Query"])
audio_pipeline.add_node(reader, name="Reader", inputs=["Retriever"])
audio_pipeline.add_node(answer2speech, name="AnswerToSpeech", inputs=["Reader"])
prediction = audio_pipeline.run(
query="Who is the father of Arya Stark?", params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 5}}
)
# Now you can either print the object directly
print("\n\nRaw object:\n")
pprint(prediction)
# Sample output:
# {
# 'answers': [ <SpeechAnswer:
# answer_audio=PosixPath('generated_audio_answers/fc704210136643b833515ba628eb4b2a.wav'),
# answer="Eddard",
# context_audio=PosixPath('generated_audio_answers/8c562ebd7e7f41e1f9208384957df173.wav'),
# context='...'
# type='extractive', score=0.9919578731060028,
# offsets_in_document=[{'start': 608, 'end': 615}], offsets_in_context=[{'start': 72, 'end': 79}],
# document_id='cc75f739897ecbf8c14657b13dda890e', meta={'name': '43_Arya_Stark.txt'}} >,
# <SpeechAnswer:
# answer_audio=PosixPath('generated_audio_answers/07d6265486b22356362387c5a098ba7d.wav'),
# answer="Ned",
# context_audio=PosixPath('generated_audio_answers/3f1ca228d6c4cfb633e55f89e97de7ac.wav'),
# context='...'
# type='extractive', score=0.9767240881919861,
# offsets_in_document=[{'start': 3687, 'end': 3801}], offsets_in_context=[{'start': 18, 'end': 132}],
# document_id='9acf17ec9083c4022f69eb4a37187080', meta={'name': '43_Arya_Stark.txt'}}>,
# ...
# ]
# 'documents': [ <SpeechDocument:
# content_type='text', score=0.8034909798951382, meta={'name': '43_Arya_Stark.txt'}, embedding=None, id=d1f36ec7170e4c46cde65787fe125dfe',
# content_audio=PosixPath('generated_audio_documents/07d6265486b22356362387c5a098ba7d.wav'),
# content='\n===\'\'A Game of Thrones\'\'===\nSansa Stark begins the novel by being betrothed to Crown ...'>,
# <SpeechDocument:
# content_type='text', score=0.8002150354529785, meta={'name': '191_Gendry.txt'}, embedding=None, id='dd4e070a22896afa81748d6510006d2',
# content_audio=PosixPath('generated_audio_documents/07d6265486b22356362387c5a098ba7d.wav'),
# content='\n===Season 2===\nGendry travels North with Yoren and other Night's Watch recruits, including Arya ...'>,
# ...
# ],
# 'no_ans_gap': 11.688868522644043,
# 'node_id': 'Reader',
# 'params': {'Reader': {'top_k': 5}, 'Retriever': {'top_k': 5}},
# 'query': 'Who is the father of Arya Stark?',
# 'root_node': 'Query'
# }
# Or use a util to simplify the output
# Change `minimum` to `medium` or `all` to raise the level of detail
print("\n\nSimplified output:\n")
print_answers(prediction, details="minimum")
# Sample output:
#
# Query: Who is the father of Arya Stark?
# Answers:
# [ { 'answer_audio': PosixPath('generated_audio_answers/07d6265486b22356362387c5a098ba7d.wav'),
# 'answer': 'Eddard',
# 'context_transcript': PosixPath('generated_audio_answers/3f1ca228d6c4cfb633e55f89e97de7ac.wav'),
# 'context': ' role of Arya Stark in the television series. '
# 'Arya accompanies her father Eddard and her sister '
# 'Sansa to King's Landing. Before their departure, Arya's h'},
# { 'answer_audio': PosixPath('generated_audio_answers/83c3a02141cac4caffe0718cfd6c405c.wav'),
# 'answer': 'Lord Eddard Stark',
# 'context_audio': PosixPath('generated_audio_answers/8c562ebd7e7f41e1f9208384957df173.wav'),
# 'context': 'ark daughters. During the Tourney of the Hand '
# 'to honour her father Lord Eddard Stark, Sansa '
# 'Stark is enchanted by the knights performing in '
# 'the event.'},
# ...
# The document the first answer was extracted from
original_document = [doc for doc in prediction["documents"] if doc.id == prediction["answers"][0].document_id][0]
pprint(original_document)
# Sample output
#
# <Document: {
# 'content': '== Storylines ==\n=== Novels ===\n==== \'\'A Game of Thrones\'\' ====\nCoat of arms of House Stark\n\n
# Arya adopts a direwolf cub, which she names Nymeria after a legendary warrior queen. She travels with
# her father, Eddard, to King\'s Landing when he is made Hand of the King. Before she leaves, her
# half-brother Jon Snow has a smallsword made for her as a parting gift, which she names "Needle" after
# her least favorite ladylike activity. While taking a walk together, Prince Joffrey and her sister Sansa
# happen upon Arya and her friend, the low-born butcher apprentice Mycah, sparring in the woods with broomsticks.',
# 'content_type': 'audio',
# 'score': 0.6269117688771539,
# 'embedding': None,
# 'id': '9352f650b36f93ab99684fd4746af5c1'
# 'meta': {
# 'content_audio': '/home/sara/work/haystack/generated_audio_documents/2c9223d47801b0918f2db2ad778c3d5a.wav',
# 'type': 'generative',
# '_split_id': 19,
# 'audio_format': 'wav',
# 'sample_rate': 22050,
# 'name': '43_Arya_Stark.txt'}
# }>
if __name__ == "__main__":
tutorial17_audio_features()
# This Haystack script was made with love by deepset in Berlin, Germany
# Haystack: https://github.com/deepset-ai/haystack
# deepset: https://deepset.ai/