haystack/tutorials/Tutorial11_Pipelines.py

186 lines
6.5 KiB
Python
Raw Normal View History

from haystack.utils import print_answers, print_documents
from pprint import pprint
from haystack.preprocessor.utils import fetch_archive_from_http, convert_files_to_dicts
from haystack.preprocessor.cleaning import clean_wiki_text
from haystack import Pipeline
from haystack.utils import launch_es
from haystack.document_store import ElasticsearchDocumentStore
from haystack.retriever.sparse import ElasticsearchRetriever
from haystack.retriever.dense import DensePassageRetriever
from haystack.reader import FARMReader
from haystack.pipeline import ExtractiveQAPipeline, DocumentSearchPipeline, GenerativeQAPipeline, JoinDocuments
from haystack.generator import RAGenerator
def tutorial11_pipelines():
#Download and prepare data - 517 Wikipedia articles for Game of Thrones
doc_dir = "data/article_txt_got"
s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/wiki_gameofthrones_txt.zip"
fetch_archive_from_http(url=s3_url, output_dir=doc_dir)
# convert files to dicts containing documents that can be indexed to our datastore
got_dicts = convert_files_to_dicts(
dir_path=doc_dir,
clean_func=clean_wiki_text,
split_paragraphs=True
)
# Initialize DocumentStore and index documents
launch_es()
document_store = ElasticsearchDocumentStore()
document_store.delete_all_documents()
document_store.write_documents(got_dicts)
# Initialize Sparse retriever
es_retriever = ElasticsearchRetriever(document_store=document_store)
# Initialize dense retriever
dpr_retriever = DensePassageRetriever(document_store)
document_store.update_embeddings(dpr_retriever, update_existing_embeddings=False)
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2")
######################
# Prebuilt Pipelines #
######################
# Extractive QA Pipeline
########################
p_extractive_premade = ExtractiveQAPipeline(reader=reader, retriever=es_retriever)
res = p_extractive_premade.run(
query="Who is the father of Arya Stark?",
top_k_retriever=10,
top_k_reader=5
)
print_answers(res, details="minimal")
# Document Search Pipeline
##########################
p_retrieval = DocumentSearchPipeline(es_retriever)
res = p_retrieval.run(
query="Who is the father of Arya Stark?",
top_k_retriever=10
)
print_documents(res, max_text_len=200)
# Generator Pipeline
##########################
# We set this to True so that the document store returns document embeddings
# with each document, this is needed by the Generator
document_store.return_embedding = True
# Initialize generator
rag_generator = RAGenerator()
# Generative QA
p_generator = GenerativeQAPipeline(generator=rag_generator, retriever=dpr_retriever)
res = p_generator.run(
query="Who is the father of Arya Stark?",
top_k_retriever=10
)
print_answers(res, details="minimal")
# We are setting this to False so that in later pipelines,
# we get a cleaner printout
document_store.return_embedding = False
##############################
# Creating Pipeline Diagrams #
##############################
p_extractive_premade.draw("pipeline_extractive_premade.png")
p_retrieval.draw("pipeline_retrieval.png")
p_generator.draw("pipeline_generator.png")
####################
# Custom Pipelines #
####################
# Extractive QA Pipeline
########################
# Custom built extractive QA pipeline
p_extractive = Pipeline()
p_extractive.add_node(component=es_retriever, name="Retriever", inputs=["Query"])
p_extractive.add_node(component=reader, name="Reader", inputs=["Retriever"])
# Now we can run it
res = p_extractive.run(
query="Who is the father of Arya Stark?",
top_k_retriever=10,
top_k_reader=5
)
print_answers(res, details="minimal")
p_extractive.draw("pipeline_extractive.png")
# Ensembled Retriever Pipeline
##############################
# Create ensembled pipeline
p_ensemble = Pipeline()
p_ensemble.add_node(component=es_retriever, name="ESRetriever", inputs=["Query"])
p_ensemble.add_node(component=dpr_retriever, name="DPRRetriever", inputs=["Query"])
p_ensemble.add_node(component=JoinDocuments(join_mode="concatenate"), name="JoinResults", inputs=["ESRetriever", "DPRRetriever"])
p_ensemble.add_node(component=reader, name="Reader", inputs=["JoinResults"])
p_ensemble.draw("pipeline_ensemble.png")
# Run pipeline
res = p_ensemble.run(
query="Who is the father of Arya Stark?",
top_k_retriever=5 #This is top_k per retriever
)
print_answers(res, details="minimal")
# Query Classification Pipeline
###############################
# Decision Nodes help you route your data so that only certain branches of your `Pipeline` are run.
# Though this looks very similar to the ensembled pipeline shown above,
# the key difference is that only one of the retrievers is run for each request.
# By contrast both retrievers are always run in the ensembled approach.
class QueryClassifier():
outgoing_edges = 2
def run(self, **kwargs):
if "?" in kwargs["query"]:
return (kwargs, "output_2")
else:
return (kwargs, "output_1")
# Here we build the pipeline
p_classifier = Pipeline()
p_classifier.add_node(component=QueryClassifier(), name="QueryClassifier", inputs=["Query"])
p_classifier.add_node(component=es_retriever, name="ESRetriever", inputs=["QueryClassifier.output_1"])
p_classifier.add_node(component=dpr_retriever, name="DPRRetriever", inputs=["QueryClassifier.output_2"])
p_classifier.add_node(component=reader, name="QAReader", inputs=["ESRetriever", "DPRRetriever"])
p_classifier.draw("pipeline_classifier.png")
# Run only the dense retriever on the full sentence query
res_1 = p_classifier.run(
query="Who is the father of Arya Stark?",
top_k_retriever=10
)
print("DPR Results" + "\n" + "="*15)
print_answers(res_1)
# Run only the sparse retriever on a keyword based query
res_2 = p_classifier.run(
query="Arya Stark father",
top_k_retriever=10
)
print("ES Results" + "\n" + "="*15)
print_answers(res_2)
if __name__ == "__main__":
tutorial11_pipelines()
# This Haystack script was made with love by deepset in Berlin, Germany
# Haystack: https://github.com/deepset-ai/haystack
# deepset: https://deepset.ai/