266 lines
11 KiB
Python
Raw Normal View History

import os
from typing import List
import pytest
from openai import OpenAIError
2023-11-24 14:48:43 +01:00
from haystack.components.generators import GPTGenerator
from haystack.components.generators.utils import default_streaming_callback
from haystack.dataclasses import StreamingChunk, ChatMessage
class TestGPTGenerator:
def test_init_default(self):
component = GPTGenerator(api_key="test-api-key")
assert component.client.api_key == "test-api-key"
assert component.model_name == "gpt-3.5-turbo"
assert component.streaming_callback is None
assert not component.generation_kwargs
def test_init_fail_wo_api_key(self, monkeypatch):
monkeypatch.delenv("OPENAI_API_KEY", raising=False)
with pytest.raises(OpenAIError):
GPTGenerator()
def test_init_with_parameters(self):
component = GPTGenerator(
api_key="test-api-key",
model_name="gpt-4",
streaming_callback=default_streaming_callback,
api_base_url="test-base-url",
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
)
assert component.client.api_key == "test-api-key"
assert component.model_name == "gpt-4"
assert component.streaming_callback is default_streaming_callback
assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"}
def test_to_dict_default(self):
component = GPTGenerator(api_key="test-api-key")
data = component.to_dict()
assert data == {
2023-11-24 14:48:43 +01:00
"type": "haystack.components.generators.openai.GPTGenerator",
"init_parameters": {
"model_name": "gpt-3.5-turbo",
"streaming_callback": None,
"system_prompt": None,
"api_base_url": None,
"generation_kwargs": {},
},
}
def test_to_dict_with_parameters(self):
component = GPTGenerator(
api_key="test-api-key",
model_name="gpt-4",
streaming_callback=default_streaming_callback,
api_base_url="test-base-url",
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
)
data = component.to_dict()
assert data == {
2023-11-24 14:48:43 +01:00
"type": "haystack.components.generators.openai.GPTGenerator",
"init_parameters": {
"model_name": "gpt-4",
"system_prompt": None,
"api_base_url": "test-base-url",
2023-11-24 14:48:43 +01:00
"streaming_callback": "haystack.components.generators.utils.default_streaming_callback",
"generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
},
}
def test_to_dict_with_lambda_streaming_callback(self):
component = GPTGenerator(
api_key="test-api-key",
model_name="gpt-4",
streaming_callback=lambda x: x,
api_base_url="test-base-url",
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
)
data = component.to_dict()
assert data == {
2023-11-24 14:48:43 +01:00
"type": "haystack.components.generators.openai.GPTGenerator",
"init_parameters": {
"model_name": "gpt-4",
"system_prompt": None,
"api_base_url": "test-base-url",
"streaming_callback": "test_openai.<lambda>",
"generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
},
}
def test_from_dict(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "fake-api-key")
data = {
2023-11-24 14:48:43 +01:00
"type": "haystack.components.generators.openai.GPTGenerator",
"init_parameters": {
"model_name": "gpt-4",
"system_prompt": None,
"api_base_url": "test-base-url",
2023-11-24 14:48:43 +01:00
"streaming_callback": "haystack.components.generators.utils.default_streaming_callback",
"generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
},
}
component = GPTGenerator.from_dict(data)
assert component.model_name == "gpt-4"
assert component.streaming_callback is default_streaming_callback
assert component.api_base_url == "test-base-url"
assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"}
def test_from_dict_fail_wo_env_var(self, monkeypatch):
monkeypatch.delenv("OPENAI_API_KEY", raising=False)
data = {
2023-11-24 14:48:43 +01:00
"type": "haystack.components.generators.openai.GPTGenerator",
"init_parameters": {
"model_name": "gpt-4",
"api_base_url": "test-base-url",
2023-11-24 14:48:43 +01:00
"streaming_callback": "haystack.components.generators.utils.default_streaming_callback",
"generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
},
}
with pytest.raises(OpenAIError):
GPTGenerator.from_dict(data)
def test_run(self, mock_chat_completion):
component = GPTGenerator(api_key="test-api-key")
response = component.run("What's Natural Language Processing?")
# check that the component returns the correct ChatMessage response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert [isinstance(reply, str) for reply in response["replies"]]
def test_run_with_params_streaming(self, mock_chat_completion_chunk):
streaming_callback_called = False
def streaming_callback(chunk: StreamingChunk) -> None:
nonlocal streaming_callback_called
streaming_callback_called = True
component = GPTGenerator(streaming_callback=streaming_callback)
response = component.run("Come on, stream!")
# check we called the streaming callback
assert streaming_callback_called
# check that the component still returns the correct response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert "Hello" in response["replies"][0] # see mock_chat_completion_chunk
def test_run_with_params(self, mock_chat_completion):
component = GPTGenerator(api_key="test-api-key", generation_kwargs={"max_tokens": 10, "temperature": 0.5})
response = component.run("What's Natural Language Processing?")
# check that the component calls the OpenAI API with the correct parameters
_, kwargs = mock_chat_completion.call_args
assert kwargs["max_tokens"] == 10
assert kwargs["temperature"] == 0.5
# check that the component returns the correct response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert [isinstance(reply, str) for reply in response["replies"]]
def test_check_abnormal_completions(self, caplog):
component = GPTGenerator(api_key="test-api-key")
# underlying implementation uses ChatMessage objects so we have to use them here
messages: List[ChatMessage] = []
for i, _ in enumerate(range(4)):
message = ChatMessage.from_assistant("Hello")
metadata = {"finish_reason": "content_filter" if i % 2 == 0 else "length", "index": i}
2023-12-21 17:09:58 +05:30
message.meta.update(metadata)
messages.append(message)
for m in messages:
component._check_finish_reason(m)
# check truncation warning
message_template = (
"The completion for index {index} has been truncated before reaching a natural stopping point. "
"Increase the max_tokens parameter to allow for longer completions."
)
for index in [1, 3]:
assert caplog.records[index].message == message_template.format(index=index)
# check content filter warning
message_template = "The completion for index {index} has been truncated due to the content filter."
for index in [0, 2]:
assert caplog.records[index].message == message_template.format(index=index)
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
@pytest.mark.integration
def test_live_run(self):
component = GPTGenerator(api_key=os.environ.get("OPENAI_API_KEY"))
results = component.run("What's the capital of France?")
assert len(results["replies"]) == 1
assert len(results["meta"]) == 1
response: str = results["replies"][0]
assert "Paris" in response
metadata = results["meta"][0]
assert "gpt-3.5" in metadata["model"]
assert metadata["finish_reason"] == "stop"
assert "usage" in metadata
assert "prompt_tokens" in metadata["usage"] and metadata["usage"]["prompt_tokens"] > 0
assert "completion_tokens" in metadata["usage"] and metadata["usage"]["completion_tokens"] > 0
assert "total_tokens" in metadata["usage"] and metadata["usage"]["total_tokens"] > 0
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
@pytest.mark.integration
def test_live_run_wrong_model(self):
component = GPTGenerator(model_name="something-obviously-wrong", api_key=os.environ.get("OPENAI_API_KEY"))
with pytest.raises(OpenAIError):
component.run("Whatever")
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
@pytest.mark.integration
def test_live_run_streaming(self):
class Callback:
def __init__(self):
self.responses = ""
self.counter = 0
def __call__(self, chunk: StreamingChunk) -> None:
self.counter += 1
self.responses += chunk.content if chunk.content else ""
callback = Callback()
component = GPTGenerator(os.environ.get("OPENAI_API_KEY"), streaming_callback=callback)
results = component.run("What's the capital of France?")
assert len(results["replies"]) == 1
assert len(results["meta"]) == 1
response: str = results["replies"][0]
assert "Paris" in response
metadata = results["meta"][0]
assert "gpt-3.5" in metadata["model"]
assert metadata["finish_reason"] == "stop"
# unfortunately, the usage is not available for streaming calls
# we keep the key in the metadata for compatibility
assert "usage" in metadata and len(metadata["usage"]) == 0
assert callback.counter > 1
assert "Paris" in callback.responses