2025-10-21 16:37:52 +02:00
---
title: "Google Vertex"
id: integrations-google-vertex
description: "Google Vertex integration for Haystack"
slug: "/integrations-google-vertex"
---
< a id = "haystack_integrations.components.generators.google_vertex.gemini" > < / a >
2025-10-21 18:10:10 +02:00
## Module haystack\_integrations.components.generators.google\_vertex.gemini
2025-10-21 16:37:52 +02:00
< a id = "haystack_integrations.components.generators.google_vertex.gemini.VertexAIGeminiGenerator" > < / a >
2025-10-21 18:10:10 +02:00
### VertexAIGeminiGenerator
2025-10-21 16:37:52 +02:00
`VertexAIGeminiGenerator` enables text generation using Google Gemini models.
Usage example:
```python
from haystack_integrations.components.generators.google_vertex import VertexAIGeminiGenerator
gemini = VertexAIGeminiGenerator()
result = gemini.run(parts = ["What is the most interesting thing you know?"])
for answer in result["replies"]:
print(answer)
>>> 1. **The Origin of Life:** How and where did life begin? The answers to this ...
>>> 2. **The Unseen Universe:** The vast majority of the universe is ...
>>> 3. **Quantum Entanglement:** This eerie phenomenon in quantum mechanics allows ...
>>> 4. **Time Dilation:** Einstein's theory of relativity revealed that time can ...
>>> 5. **The Fermi Paradox:** Despite the vastness of the universe and the ...
>>> 6. **Biological Evolution:** The idea that life evolves over time through natural ...
>>> 7. **Neuroplasticity:** The brain's ability to adapt and change throughout life, ...
>>> 8. **The Goldilocks Zone:** The concept of the habitable zone, or the Goldilocks zone, ...
>>> 9. **String Theory:** This theoretical framework in physics aims to unify all ...
>>> 10. **Consciousness:** The nature of human consciousness and how it arises ...
```
< a id = "haystack_integrations.components.generators.google_vertex.gemini.VertexAIGeminiGenerator.__init__" > < / a >
#### VertexAIGeminiGenerator.\_\_init\_\_
```python
def __init__ (*,
model: str = "gemini-2.0-flash",
project_id: Optional[str] = None,
location: Optional[str] = None,
generation_config: Optional[Union[GenerationConfig,
Dict[str, Any]]] = None,
safety_settings: Optional[Dict[HarmCategory,
HarmBlockThreshold]] = None,
system_instruction: Optional[Union[str, ByteStream, Part]] = None,
streaming_callback: Optional[Callable[[StreamingChunk],
None]] = None)
```
Multi-modal generator using Gemini model via Google Vertex AI.
Authenticates using Google Cloud Application Default Credentials (ADCs).
For more information see the official [Google documentation ](https://cloud.google.com/docs/authentication/provide-credentials-adc ).
**Arguments**:
- `project_id` : ID of the GCP project to use. By default, it is set during Google Cloud authentication.
- `model` : Name of the model to use. For available models, see https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models.
- `location` : The default location to use when making API calls, if not set uses us-central-1.
- `generation_config` : The generation config to use.
Can either be a [`GenerationConfig` ](https://cloud.google.com/python/docs/reference/aiplatform/latest/vertexai.generative_models.GenerationConfig )
object or a dictionary of parameters.
Accepted fields are:
- temperature
- top_p
- top_k
- candidate_count
- max_output_tokens
- stop_sequences
- `safety_settings` : The safety settings to use. See the documentation
for [HarmBlockThreshold ](https://cloud.google.com/python/docs/reference/aiplatform/latest/vertexai.generative_models.HarmBlockThreshold )
and [HarmCategory ](https://cloud.google.com/python/docs/reference/aiplatform/latest/vertexai.generative_models.HarmCategory )
for more details.
- `system_instruction` : Default system instruction to use for generating content.
- `streaming_callback` : A callback function that is called when a new token is received from the stream.
The callback function accepts StreamingChunk as an argument.
< a id = "haystack_integrations.components.generators.google_vertex.gemini.VertexAIGeminiGenerator.to_dict" > < / a >
#### VertexAIGeminiGenerator.to\_dict
```python
def to_dict() -> Dict[str, Any]
```
Serializes the component to a dictionary.
**Returns**:
Dictionary with serialized data.
< a id = "haystack_integrations.components.generators.google_vertex.gemini.VertexAIGeminiGenerator.from_dict" > < / a >
#### VertexAIGeminiGenerator.from\_dict
```python
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "VertexAIGeminiGenerator"
```
Deserializes the component from a dictionary.
**Arguments**:
- `data` : Dictionary to deserialize from.
**Returns**:
Deserialized component.
< a id = "haystack_integrations.components.generators.google_vertex.gemini.VertexAIGeminiGenerator.run" > < / a >
#### VertexAIGeminiGenerator.run
```python
@component .output_types(replies=List[str])
def run(parts: Variadic[Union[str, ByteStream, Part]],
streaming_callback: Optional[Callable[[StreamingChunk], None]] = None)
```
Generates content using the Gemini model.
**Arguments**:
- `parts` : Prompt for the model.
- `streaming_callback` : A callback function that is called when a new token is received from the stream.
**Returns**:
A dictionary with the following keys:
- `replies` : A list of generated content.
< a id = "haystack_integrations.components.generators.google_vertex.captioner" > < / a >
2025-10-21 18:10:10 +02:00
## Module haystack\_integrations.components.generators.google\_vertex.captioner
2025-10-21 16:37:52 +02:00
< a id = "haystack_integrations.components.generators.google_vertex.captioner.VertexAIImageCaptioner" > < / a >
2025-10-21 18:10:10 +02:00
### VertexAIImageCaptioner
2025-10-21 16:37:52 +02:00
`VertexAIImageCaptioner` enables text generation using Google Vertex AI imagetext generative model.
Authenticates using Google Cloud Application Default Credentials (ADCs).
For more information see the official [Google documentation ](https://cloud.google.com/docs/authentication/provide-credentials-adc ).
Usage example:
```python
import requests
from haystack.dataclasses.byte_stream import ByteStream
from haystack_integrations.components.generators.google_vertex import VertexAIImageCaptioner
captioner = VertexAIImageCaptioner()
image = ByteStream(
data=requests.get(
"https://raw.githubusercontent.com/deepset-ai/haystack-core-integrations/main/integrations/google_vertex/example_assets/robot1.jpg"
).content
)
result = captioner.run(image=image)
for caption in result["captions"]:
print(caption)
>>> two gold robots are standing next to each other in the desert
```
< a id = "haystack_integrations.components.generators.google_vertex.captioner.VertexAIImageCaptioner.__init__" > < / a >
#### VertexAIImageCaptioner.\_\_init\_\_
```python
def __init__ (*,
model: str = "imagetext",
project_id: Optional[str] = None,
location: Optional[str] = None,
**kwargs)
```
Generate image captions using a Google Vertex AI model.
Authenticates using Google Cloud Application Default Credentials (ADCs).
For more information see the official [Google documentation ](https://cloud.google.com/docs/authentication/provide-credentials-adc ).
**Arguments**:
- `project_id` : ID of the GCP project to use. By default, it is set during Google Cloud authentication.
- `model` : Name of the model to use.
- `location` : The default location to use when making API calls, if not set uses us-central-1.
Defaults to None.
- `kwargs` : Additional keyword arguments to pass to the model.
For a list of supported arguments see the `ImageTextModel.get_captions()` documentation.
< a id = "haystack_integrations.components.generators.google_vertex.captioner.VertexAIImageCaptioner.to_dict" > < / a >
#### VertexAIImageCaptioner.to\_dict
```python
def to_dict() -> Dict[str, Any]
```
Serializes the component to a dictionary.
**Returns**:
Dictionary with serialized data.
< a id = "haystack_integrations.components.generators.google_vertex.captioner.VertexAIImageCaptioner.from_dict" > < / a >
#### VertexAIImageCaptioner.from\_dict
```python
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "VertexAIImageCaptioner"
```
Deserializes the component from a dictionary.
**Arguments**:
- `data` : Dictionary to deserialize from.
**Returns**:
Deserialized component.
< a id = "haystack_integrations.components.generators.google_vertex.captioner.VertexAIImageCaptioner.run" > < / a >
#### VertexAIImageCaptioner.run
```python
@component .output_types(captions=List[str])
def run(image: ByteStream)
```
Prompts the model to generate captions for the given image.
**Arguments**:
- `image` : The image to generate captions for.
**Returns**:
A dictionary with the following keys:
- `captions` : A list of captions generated by the model.
< a id = "haystack_integrations.components.generators.google_vertex.code_generator" > < / a >
2025-10-21 18:10:10 +02:00
## Module haystack\_integrations.components.generators.google\_vertex.code\_generator
2025-10-21 16:37:52 +02:00
< a id = "haystack_integrations.components.generators.google_vertex.code_generator.VertexAICodeGenerator" > < / a >
2025-10-21 18:10:10 +02:00
### VertexAICodeGenerator
2025-10-21 16:37:52 +02:00
This component enables code generation using Google Vertex AI generative model.
`VertexAICodeGenerator` supports `code-bison` , `code-bison-32k` , and `code-gecko` .
Usage example:
```python
from haystack_integrations.components.generators.google_vertex import VertexAICodeGenerator
generator = VertexAICodeGenerator()
result = generator.run(prefix="def to_json(data):")
for answer in result["replies"]:
print(answer)
>>> ```python
>>> import json
>>>
>>> def to_json(data):
>>> """Converts a Python object to a JSON string.
>>>
>>> Args:
>>> data: The Python object to convert.
>>>
>>> Returns:
>>> A JSON string representing the Python object.
>>> """
>>>
>>> return json.dumps(data)
>>> ```
```
< a id = "haystack_integrations.components.generators.google_vertex.code_generator.VertexAICodeGenerator.__init__" > < / a >
#### VertexAICodeGenerator.\_\_init\_\_
```python
def __init__ (*,
model: str = "code-bison",
project_id: Optional[str] = None,
location: Optional[str] = None,
**kwargs)
```
Generate code using a Google Vertex AI model.
Authenticates using Google Cloud Application Default Credentials (ADCs).
For more information see the official [Google documentation ](https://cloud.google.com/docs/authentication/provide-credentials-adc ).
**Arguments**:
- `project_id` : ID of the GCP project to use. By default, it is set during Google Cloud authentication.
- `model` : Name of the model to use.
- `location` : The default location to use when making API calls, if not set uses us-central-1.
- `kwargs` : Additional keyword arguments to pass to the model.
For a list of supported arguments see the `TextGenerationModel.predict()` documentation.
< a id = "haystack_integrations.components.generators.google_vertex.code_generator.VertexAICodeGenerator.to_dict" > < / a >
#### VertexAICodeGenerator.to\_dict
```python
def to_dict() -> Dict[str, Any]
```
Serializes the component to a dictionary.
**Returns**:
Dictionary with serialized data.
< a id = "haystack_integrations.components.generators.google_vertex.code_generator.VertexAICodeGenerator.from_dict" > < / a >
#### VertexAICodeGenerator.from\_dict
```python
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "VertexAICodeGenerator"
```
Deserializes the component from a dictionary.
**Arguments**:
- `data` : Dictionary to deserialize from.
**Returns**:
Deserialized component.
< a id = "haystack_integrations.components.generators.google_vertex.code_generator.VertexAICodeGenerator.run" > < / a >
#### VertexAICodeGenerator.run
```python
@component .output_types(replies=List[str])
def run(prefix: str, suffix: Optional[str] = None)
```
Generate code using a Google Vertex AI model.
**Arguments**:
- `prefix` : Code before the current point.
- `suffix` : Code after the current point.
**Returns**:
A dictionary with the following keys:
- `replies` : A list of generated code snippets.
< a id = "haystack_integrations.components.generators.google_vertex.image_generator" > < / a >
2025-10-21 18:10:10 +02:00
## Module haystack\_integrations.components.generators.google\_vertex.image\_generator
2025-10-21 16:37:52 +02:00
< a id = "haystack_integrations.components.generators.google_vertex.image_generator.VertexAIImageGenerator" > < / a >
2025-10-21 18:10:10 +02:00
### VertexAIImageGenerator
2025-10-21 16:37:52 +02:00
This component enables image generation using Google Vertex AI generative model.
Authenticates using Google Cloud Application Default Credentials (ADCs).
For more information see the official [Google documentation ](https://cloud.google.com/docs/authentication/provide-credentials-adc ).
Usage example:
```python
from pathlib import Path
from haystack_integrations.components.generators.google_vertex import VertexAIImageGenerator
generator = VertexAIImageGenerator()
result = generator.run(prompt="Generate an image of a cute cat")
result["images"][0].to_file(Path("my_image.png"))
```
< a id = "haystack_integrations.components.generators.google_vertex.image_generator.VertexAIImageGenerator.__init__" > < / a >
#### VertexAIImageGenerator.\_\_init\_\_
```python
def __init__ (*,
model: str = "imagegeneration",
project_id: Optional[str] = None,
location: Optional[str] = None,
**kwargs)
```
Generates images using a Google Vertex AI model.
Authenticates using Google Cloud Application Default Credentials (ADCs).
For more information see the official [Google documentation ](https://cloud.google.com/docs/authentication/provide-credentials-adc ).
**Arguments**:
- `project_id` : ID of the GCP project to use. By default, it is set during Google Cloud authentication.
- `model` : Name of the model to use.
- `location` : The default location to use when making API calls, if not set uses us-central-1.
- `kwargs` : Additional keyword arguments to pass to the model.
For a list of supported arguments see the `ImageGenerationModel.generate_images()` documentation.
< a id = "haystack_integrations.components.generators.google_vertex.image_generator.VertexAIImageGenerator.to_dict" > < / a >
#### VertexAIImageGenerator.to\_dict
```python
def to_dict() -> Dict[str, Any]
```
Serializes the component to a dictionary.
**Returns**:
Dictionary with serialized data.
< a id = "haystack_integrations.components.generators.google_vertex.image_generator.VertexAIImageGenerator.from_dict" > < / a >
#### VertexAIImageGenerator.from\_dict
```python
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "VertexAIImageGenerator"
```
Deserializes the component from a dictionary.
**Arguments**:
- `data` : Dictionary to deserialize from.
**Returns**:
Deserialized component.
< a id = "haystack_integrations.components.generators.google_vertex.image_generator.VertexAIImageGenerator.run" > < / a >
#### VertexAIImageGenerator.run
```python
@component .output_types(images=List[ByteStream])
def run(prompt: str, negative_prompt: Optional[str] = None)
```
Produces images based on the given prompt.
**Arguments**:
- `prompt` : The prompt to generate images from.
- `negative_prompt` : A description of what you want to omit in
the generated images.
**Returns**:
A dictionary with the following keys:
- `images` : A list of ByteStream objects, each containing an image.
< a id = "haystack_integrations.components.generators.google_vertex.question_answering" > < / a >
2025-10-21 18:10:10 +02:00
## Module haystack\_integrations.components.generators.google\_vertex.question\_answering
2025-10-21 16:37:52 +02:00
< a id = "haystack_integrations.components.generators.google_vertex.question_answering.VertexAIImageQA" > < / a >
2025-10-21 18:10:10 +02:00
### VertexAIImageQA
2025-10-21 16:37:52 +02:00
This component enables text generation (image captioning) using Google Vertex AI generative models.
Authenticates using Google Cloud Application Default Credentials (ADCs).
For more information see the official [Google documentation ](https://cloud.google.com/docs/authentication/provide-credentials-adc ).
Usage example:
```python
from haystack.dataclasses.byte_stream import ByteStream
from haystack_integrations.components.generators.google_vertex import VertexAIImageQA
qa = VertexAIImageQA()
image = ByteStream.from_file_path("dog.jpg")
res = qa.run(image=image, question="What color is this dog")
print(res["replies"][0])
>>> white
```
< a id = "haystack_integrations.components.generators.google_vertex.question_answering.VertexAIImageQA.__init__" > < / a >
#### VertexAIImageQA.\_\_init\_\_
```python
def __init__ (*,
model: str = "imagetext",
project_id: Optional[str] = None,
location: Optional[str] = None,
**kwargs)
```
Answers questions about an image using a Google Vertex AI model.
Authenticates using Google Cloud Application Default Credentials (ADCs).
For more information see the official [Google documentation ](https://cloud.google.com/docs/authentication/provide-credentials-adc ).
**Arguments**:
- `project_id` : ID of the GCP project to use. By default, it is set during Google Cloud authentication.
- `model` : Name of the model to use.
- `location` : The default location to use when making API calls, if not set uses us-central-1.
- `kwargs` : Additional keyword arguments to pass to the model.
For a list of supported arguments see the `ImageTextModel.ask_question()` documentation.
< a id = "haystack_integrations.components.generators.google_vertex.question_answering.VertexAIImageQA.to_dict" > < / a >
#### VertexAIImageQA.to\_dict
```python
def to_dict() -> Dict[str, Any]
```
Serializes the component to a dictionary.
**Returns**:
Dictionary with serialized data.
< a id = "haystack_integrations.components.generators.google_vertex.question_answering.VertexAIImageQA.from_dict" > < / a >
#### VertexAIImageQA.from\_dict
```python
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "VertexAIImageQA"
```
Deserializes the component from a dictionary.
**Arguments**:
- `data` : Dictionary to deserialize from.
**Returns**:
Deserialized component.
< a id = "haystack_integrations.components.generators.google_vertex.question_answering.VertexAIImageQA.run" > < / a >
#### VertexAIImageQA.run
```python
@component .output_types(replies=List[str])
def run(image: ByteStream, question: str)
```
Prompts model to answer a question about an image.
**Arguments**:
- `image` : The image to ask the question about.
- `question` : The question to ask.
**Returns**:
A dictionary with the following keys:
- `replies` : A list of answers to the question.
< a id = "haystack_integrations.components.generators.google_vertex.text_generator" > < / a >
2025-10-21 18:10:10 +02:00
## Module haystack\_integrations.components.generators.google\_vertex.text\_generator
2025-10-21 16:37:52 +02:00
< a id = "haystack_integrations.components.generators.google_vertex.text_generator.VertexAITextGenerator" > < / a >
2025-10-21 18:10:10 +02:00
### VertexAITextGenerator
2025-10-21 16:37:52 +02:00
This component enables text generation using Google Vertex AI generative models.
`VertexAITextGenerator` supports `text-bison` , `text-unicorn` and `text-bison-32k` models.
Authenticates using Google Cloud Application Default Credentials (ADCs).
For more information see the official [Google documentation ](https://cloud.google.com/docs/authentication/provide-credentials-adc ).
Usage example:
```python
from haystack_integrations.components.generators.google_vertex import VertexAITextGenerator
generator = VertexAITextGenerator()
res = generator.run("Tell me a good interview question for a software engineer.")
print(res["replies"][0])
>>> **Question:**
>>> You are given a list of integers and a target sum.
>>> Find all unique combinations of numbers in the list that add up to the target sum.
>>>
>>> **Example:**
>>>
>>> ```
>>> Input: [1, 2, 3, 4, 5], target = 7
>>> Output: [[1, 2, 4], [3, 4]]
>>> ```
>>>
>>> **Follow-up:** What if the list contains duplicate numbers?
```
< a id = "haystack_integrations.components.generators.google_vertex.text_generator.VertexAITextGenerator.__init__" > < / a >
#### VertexAITextGenerator.\_\_init\_\_
```python
def __init__ (*,
model: str = "text-bison",
project_id: Optional[str] = None,
location: Optional[str] = None,
**kwargs)
```
Generate text using a Google Vertex AI model.
Authenticates using Google Cloud Application Default Credentials (ADCs).
For more information see the official [Google documentation ](https://cloud.google.com/docs/authentication/provide-credentials-adc ).
**Arguments**:
- `project_id` : ID of the GCP project to use. By default, it is set during Google Cloud authentication.
- `model` : Name of the model to use.
- `location` : The default location to use when making API calls, if not set uses us-central-1.
- `kwargs` : Additional keyword arguments to pass to the model.
For a list of supported arguments see the `TextGenerationModel.predict()` documentation.
< a id = "haystack_integrations.components.generators.google_vertex.text_generator.VertexAITextGenerator.to_dict" > < / a >
#### VertexAITextGenerator.to\_dict
```python
def to_dict() -> Dict[str, Any]
```
Serializes the component to a dictionary.
**Returns**:
Dictionary with serialized data.
< a id = "haystack_integrations.components.generators.google_vertex.text_generator.VertexAITextGenerator.from_dict" > < / a >
#### VertexAITextGenerator.from\_dict
```python
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "VertexAITextGenerator"
```
Deserializes the component from a dictionary.
**Arguments**:
- `data` : Dictionary to deserialize from.
**Returns**:
Deserialized component.
< a id = "haystack_integrations.components.generators.google_vertex.text_generator.VertexAITextGenerator.run" > < / a >
#### VertexAITextGenerator.run
```python
@component .output_types(replies=List[str],
safety_attributes=Dict[str, float],
citations=List[Dict[str, Any]])
def run(prompt: str)
```
Prompts the model to generate text.
**Arguments**:
- `prompt` : The prompt to use for text generation.
**Returns**:
A dictionary with the following keys:
- `replies` : A list of generated replies.
- `safety_attributes` : A dictionary with the [safety scores ](https://cloud.google.com/vertex-ai/generative-ai/docs/learn/responsible-ai#safety_attribute_descriptions )
of each answer.
- `citations` : A list of citations for each answer.
< a id = "haystack_integrations.components.generators.google_vertex.chat.gemini" > < / a >
2025-10-21 18:10:10 +02:00
## Module haystack\_integrations.components.generators.google\_vertex.chat.gemini
2025-10-21 16:37:52 +02:00
< a id = "haystack_integrations.components.generators.google_vertex.chat.gemini.VertexAIGeminiChatGenerator" > < / a >
2025-10-21 18:10:10 +02:00
### VertexAIGeminiChatGenerator
2025-10-21 16:37:52 +02:00
`VertexAIGeminiChatGenerator` enables chat completion using Google Gemini models.
Authenticates using Google Cloud Application Default Credentials (ADCs).
For more information see the official [Google documentation ](https://cloud.google.com/docs/authentication/provide-credentials-adc ).
### Usage example
```python
from haystack.dataclasses import ChatMessage
from haystack_integrations.components.generators.google_vertex import VertexAIGeminiChatGenerator
gemini_chat = VertexAIGeminiChatGenerator()
messages = [ChatMessage.from_user("Tell me the name of a movie")]
res = gemini_chat.run(messages)
print(res["replies"][0].text)
>>> The Shawshank Redemption
#### With Tool calling:
```python
from typing import Annotated
from haystack.utils import Secret
from haystack.dataclasses.chat_message import ChatMessage
from haystack.components.tools import ToolInvoker
from haystack.tools import create_tool_from_function
from haystack_integrations.components.generators.google_vertex import VertexAIGeminiChatGenerator
__example function to get the current weather__
def get_current_weather(
location: Annotated[str, "The city for which to get the weather, e.g. 'San Francisco'"] = "Munich",
unit: Annotated[str, "The unit for the temperature, e.g. 'celsius'"] = "celsius",
) -> str:
return f"The weather in {location} is sunny. The temperature is 20 {unit}."
tool = create_tool_from_function(get_current_weather)
tool_invoker = ToolInvoker(tools=[tool])
gemini_chat = VertexAIGeminiChatGenerator(
model="gemini-2.0-flash-exp",
tools=[tool],
)
user_message = [ChatMessage.from_user("What is the temperature in celsius in Berlin?")]
replies = gemini_chat.run(messages=user_message)["replies"]
print(replies[0].tool_calls)
__actually invoke the tool__
tool_messages = tool_invoker.run(messages=replies)["tool_messages"]
messages = user_message + replies + tool_messages
__transform the tool call result into a human readable message__
final_replies = gemini_chat.run(messages=messages)["replies"]
print(final_replies[0].text)
```
< a id = "haystack_integrations.components.generators.google_vertex.chat.gemini.VertexAIGeminiChatGenerator.__init__" > < / a >
#### VertexAIGeminiChatGenerator.\_\_init\_\_
```python
def __init__ (*,
model: str = "gemini-1.5-flash",
project_id: Optional[str] = None,
location: Optional[str] = None,
generation_config: Optional[Union[GenerationConfig,
Dict[str, Any]]] = None,
safety_settings: Optional[Dict[HarmCategory,
HarmBlockThreshold]] = None,
tools: Optional[List[Tool]] = None,
tool_config: Optional[ToolConfig] = None,
streaming_callback: Optional[StreamingCallbackT] = None)
```
`VertexAIGeminiChatGenerator` enables chat completion using Google Gemini models.
Authenticates using Google Cloud Application Default Credentials (ADCs).
For more information see the official [Google documentation ](https://cloud.google.com/docs/authentication/provide-credentials-adc ).
**Arguments**:
- `model` : Name of the model to use. For available models, see https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models.
- `project_id` : ID of the GCP project to use. By default, it is set during Google Cloud authentication.
- `location` : The default location to use when making API calls, if not set uses us-central-1.
Defaults to None.
- `generation_config` : Configuration for the generation process.
See the [GenerationConfig documentation](https://cloud.google.com/python/docs/reference/aiplatform/latest/vertexai.generative_models.GenerationConfig
for a list of supported arguments.
- `safety_settings` : Safety settings to use when generating content. See the documentation
for [HarmBlockThreshold ](https://cloud.google.com/python/docs/reference/aiplatform/latest/vertexai.generative_models.HarmBlockThreshold )
and [HarmCategory ](https://cloud.google.com/python/docs/reference/aiplatform/latest/vertexai.generative_models.HarmCategory )
for more details.
- `tools` : A list of tools for which the model can prepare calls.
- `tool_config` : The tool config to use. See the documentation for [ToolConfig]
(https://cloud.google.com/vertex-ai/generative-ai/docs/reference/python/latest/vertexai.generative_models.ToolConfig)
- `streaming_callback` : A callback function that is called when a new token is received from
the stream. The callback function accepts StreamingChunk as an argument.
< a id = "haystack_integrations.components.generators.google_vertex.chat.gemini.VertexAIGeminiChatGenerator.to_dict" > < / a >
#### VertexAIGeminiChatGenerator.to\_dict
```python
def to_dict() -> Dict[str, Any]
```
Serializes the component to a dictionary.
**Returns**:
Dictionary with serialized data.
< a id = "haystack_integrations.components.generators.google_vertex.chat.gemini.VertexAIGeminiChatGenerator.from_dict" > < / a >
#### VertexAIGeminiChatGenerator.from\_dict
```python
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "VertexAIGeminiChatGenerator"
```
Deserializes the component from a dictionary.
**Arguments**:
- `data` : Dictionary to deserialize from.
**Returns**:
Deserialized component.
< a id = "haystack_integrations.components.generators.google_vertex.chat.gemini.VertexAIGeminiChatGenerator.run" > < / a >
#### VertexAIGeminiChatGenerator.run
```python
@component .output_types(replies=List[ChatMessage])
def run(messages: List[ChatMessage],
streaming_callback: Optional[StreamingCallbackT] = None,
*,
tools: Optional[List[Tool]] = None)
```
**Arguments**:
- `messages` : A list of `ChatMessage` instances, representing the input messages.
- `streaming_callback` : A callback function that is called when a new token is received from the stream.
- `tools` : A list of tools for which the model can prepare calls. If set, it will override the `tools` parameter set
during component initialization.
**Returns**:
A dictionary containing the following key:
- `replies` : A list containing the generated responses as `ChatMessage` instances.
< a id = "haystack_integrations.components.generators.google_vertex.chat.gemini.VertexAIGeminiChatGenerator.run_async" > < / a >
#### VertexAIGeminiChatGenerator.run\_async
```python
@component .output_types(replies=List[ChatMessage])
async def run_async(messages: List[ChatMessage],
streaming_callback: Optional[StreamingCallbackT] = None,
*,
tools: Optional[List[Tool]] = None)
```
Async version of the run method. Generates text based on the provided messages.
**Arguments**:
- `messages` : A list of `ChatMessage` instances, representing the input messages.
- `streaming_callback` : A callback function that is called when a new token is received from the stream.
- `tools` : A list of tools for which the model can prepare calls. If set, it will override the `tools` parameter set
during component initialization.
**Returns**:
A dictionary containing the following key:
- `replies` : A list containing the generated responses as `ChatMessage` instances.
< a id = "haystack_integrations.components.embedders.google_vertex.document_embedder" > < / a >
2025-10-21 18:10:10 +02:00
## Module haystack\_integrations.components.embedders.google\_vertex.document\_embedder
2025-10-21 16:37:52 +02:00
< a id = "haystack_integrations.components.embedders.google_vertex.document_embedder.VertexAIDocumentEmbedder" > < / a >
2025-10-21 18:10:10 +02:00
### VertexAIDocumentEmbedder
2025-10-21 16:37:52 +02:00
Embed text using Vertex AI Embeddings API.
See available models in the official
[Google documentation ](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api#syntax ).
Usage example:
```python
from haystack import Document
from haystack_integrations.components.embedders.google_vertex import VertexAIDocumentEmbedder
doc = Document(content="I love pizza!")
document_embedder = VertexAIDocumentEmbedder(model="text-embedding-005")
result = document_embedder.run([doc])
print(result['documents'][0].embedding)
# [-0.044606007635593414, 0.02857724390923977, -0.03549133986234665,
```
< a id = "haystack_integrations.components.embedders.google_vertex.document_embedder.VertexAIDocumentEmbedder.__init__" > < / a >
#### VertexAIDocumentEmbedder.\_\_init\_\_
```python
def __init__ (model: Literal[
"text-embedding-004",
"text-embedding-005",
"textembedding-gecko-multilingual@001 ",
"text-multilingual-embedding-002",
"text-embedding-large-exp-03-07",
],
task_type: Literal[
"RETRIEVAL_DOCUMENT",
"RETRIEVAL_QUERY",
"SEMANTIC_SIMILARITY",
"CLASSIFICATION",
"CLUSTERING",
"QUESTION_ANSWERING",
"FACT_VERIFICATION",
"CODE_RETRIEVAL_QUERY",
] = "RETRIEVAL_DOCUMENT",
gcp_region_name: Optional[Secret] = Secret.from_env_var(
"GCP_DEFAULT_REGION", strict=False),
gcp_project_id: Optional[Secret] = Secret.from_env_var(
"GCP_PROJECT_ID", strict=False),
batch_size: int = 32,
max_tokens_total: int = 20000,
time_sleep: int = 30,
retries: int = 3,
progress_bar: bool = True,
truncate_dim: Optional[int] = None,
meta_fields_to_embed: Optional[List[str]] = None,
embedding_separator: str = "\n") -> None
```
Generate Document Embedder using a Google Vertex AI model.
Authenticates using Google Cloud Application Default Credentials (ADCs).
For more information see the official [Google documentation ](https://cloud.google.com/docs/authentication/provide-credentials-adc ).
**Arguments**:
- `model` : Name of the model to use.
- `task_type` : The type of task for which the embeddings are being generated.
For more information see the official [Google documentation ](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api#tasktype ).
- `gcp_region_name` : The default location to use when making API calls, if not set uses us-central-1.
- `gcp_project_id` : ID of the GCP project to use. By default, it is set during Google Cloud authentication.
- `batch_size` : The number of documents to process in a single batch.
- `max_tokens_total` : The maximum number of tokens to process in total.
- `time_sleep` : The time to sleep between retries in seconds.
- `retries` : The number of retries in case of failure.
- `progress_bar` : Whether to display a progress bar during processing.
- `truncate_dim` : The dimension to truncate the embeddings to, if specified.
- `meta_fields_to_embed` : A list of metadata fields to include in the embeddings.
- `embedding_separator` : The separator to use between different embeddings.
**Raises**:
- `ValueError` : If the provided model is not in the list of supported models.
< a id = "haystack_integrations.components.embedders.google_vertex.document_embedder.VertexAIDocumentEmbedder.get_text_embedding_input" > < / a >
#### VertexAIDocumentEmbedder.get\_text\_embedding\_input
```python
def get_text_embedding_input(
batch: List[Document]) -> List[TextEmbeddingInput]
```
Converts a batch of Document objects into a list of TextEmbeddingInput objects.
**Arguments**:
- `batch` _List[Document]_ - A list of Document objects to be converted.
**Returns**:
- `List[TextEmbeddingInput]` - A list of TextEmbeddingInput objects created from the input documents.
< a id = "haystack_integrations.components.embedders.google_vertex.document_embedder.VertexAIDocumentEmbedder.embed_batch_by_smaller_batches" > < / a >
#### VertexAIDocumentEmbedder.embed\_batch\_by\_smaller\_batches
```python
def embed_batch_by_smaller_batches(batch: List[str],
subbatch=1) -> List[List[float]]
```
Embeds a batch of text strings by dividing them into smaller sub-batches.
**Arguments**:
- `batch` _List[str]_ - A list of text strings to be embedded.
- `subbatch` _int, optional_ - The size of the smaller sub-batches. Defaults to 1.
**Returns**:
- `List[List[float]]` - A list of embeddings, where each embedding is a list of floats.
**Raises**:
- `Exception` - If embedding fails at the item level, an exception is raised with the error details.
< a id = "haystack_integrations.components.embedders.google_vertex.document_embedder.VertexAIDocumentEmbedder.embed_batch" > < / a >
#### VertexAIDocumentEmbedder.embed\_batch
```python
def embed_batch(batch: List[str]) -> List[List[float]]
```
Generate embeddings for a batch of text strings.
**Arguments**:
- `batch` _List[str]_ - A list of text strings to be embedded.
**Returns**:
- `List[List[float]]` - A list of embeddings, where each embedding is a list of floats.
< a id = "haystack_integrations.components.embedders.google_vertex.document_embedder.VertexAIDocumentEmbedder.run" > < / a >
#### VertexAIDocumentEmbedder.run
```python
@component .output_types(documents=List[Document])
def run(documents: List[Document])
```
Processes all documents in batches while adhering to the API's token limit per request.
**Arguments**:
- `documents` : A list of documents to embed.
**Returns**:
A dictionary with the following keys:
- `documents` : A list of documents with embeddings.
< a id = "haystack_integrations.components.embedders.google_vertex.document_embedder.VertexAIDocumentEmbedder.to_dict" > < / a >
#### VertexAIDocumentEmbedder.to\_dict
```python
def to_dict() -> Dict[str, Any]
```
Serializes the component to a dictionary.
**Returns**:
Dictionary with serialized data.
< a id = "haystack_integrations.components.embedders.google_vertex.document_embedder.VertexAIDocumentEmbedder.from_dict" > < / a >
#### VertexAIDocumentEmbedder.from\_dict
```python
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "VertexAIDocumentEmbedder"
```
Deserializes the component from a dictionary.
**Arguments**:
- `data` : Dictionary to deserialize from.
**Returns**:
Deserialized component.
< a id = "haystack_integrations.components.embedders.google_vertex.text_embedder" > < / a >
2025-10-21 18:10:10 +02:00
## Module haystack\_integrations.components.embedders.google\_vertex.text\_embedder
2025-10-21 16:37:52 +02:00
< a id = "haystack_integrations.components.embedders.google_vertex.text_embedder.VertexAITextEmbedder" > < / a >
2025-10-21 18:10:10 +02:00
### VertexAITextEmbedder
2025-10-21 16:37:52 +02:00
Embed text using VertexAI Text Embeddings API.
See available models in the official
[Google documentation ](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api#syntax ).
Usage example:
```python
from haystack_integrations.components.embedders.google_vertex import VertexAITextEmbedder
text_to_embed = "I love pizza!"
text_embedder = VertexAITextEmbedder(model="text-embedding-005")
print(text_embedder.run(text_to_embed))
# {'embedding': [-0.08127457648515701, 0.03399784862995148, -0.05116401985287666, ...]
```
< a id = "haystack_integrations.components.embedders.google_vertex.text_embedder.VertexAITextEmbedder.__init__" > < / a >
#### VertexAITextEmbedder.\_\_init\_\_
```python
def __init__ (model: Literal[
"text-embedding-004",
"text-embedding-005",
"textembedding-gecko-multilingual@001 ",
"text-multilingual-embedding-002",
"text-embedding-large-exp-03-07",
],
task_type: Literal[
"RETRIEVAL_DOCUMENT",
"RETRIEVAL_QUERY",
"SEMANTIC_SIMILARITY",
"CLASSIFICATION",
"CLUSTERING",
"QUESTION_ANSWERING",
"FACT_VERIFICATION",
"CODE_RETRIEVAL_QUERY",
] = "RETRIEVAL_QUERY",
gcp_region_name: Optional[Secret] = Secret.from_env_var(
"GCP_DEFAULT_REGION", strict=False),
gcp_project_id: Optional[Secret] = Secret.from_env_var(
"GCP_PROJECT_ID", strict=False),
progress_bar: bool = True,
truncate_dim: Optional[int] = None) -> None
```
Initializes the TextEmbedder with the specified model, task type, and GCP configuration.
**Arguments**:
- `model` : Name of the model to use.
- `task_type` : The type of task for which the embeddings are being generated.
For more information see the official [Google documentation ](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api#tasktype ).
- `gcp_region_name` : The default location to use when making API calls, if not set uses us-central-1.
- `gcp_project_id` : ID of the GCP project to use. By default, it is set during Google Cloud authentication.
- `progress_bar` : Whether to display a progress bar during processing.
- `truncate_dim` : The dimension to truncate the embeddings to, if specified.
< a id = "haystack_integrations.components.embedders.google_vertex.text_embedder.VertexAITextEmbedder.run" > < / a >
#### VertexAITextEmbedder.run
```python
@component .output_types(embedding=List[float])
def run(text: Union[List[Document], List[str], str])
```
Processes text in batches while adhering to the API's token limit per request.
**Arguments**:
- `text` : The text to embed.
**Returns**:
A dictionary with the following keys:
- `embedding` : The embedding of the input text.
< a id = "haystack_integrations.components.embedders.google_vertex.text_embedder.VertexAITextEmbedder.to_dict" > < / a >
#### VertexAITextEmbedder.to\_dict
```python
def to_dict() -> Dict[str, Any]
```
Serializes the component to a dictionary.
**Returns**:
Dictionary with serialized data.
< a id = "haystack_integrations.components.embedders.google_vertex.text_embedder.VertexAITextEmbedder.from_dict" > < / a >
#### VertexAITextEmbedder.from\_dict
```python
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "VertexAITextEmbedder"
```
Deserializes the component from a dictionary.
**Arguments**:
- `data` : Dictionary to deserialize from.
**Returns**:
Deserialized component.