haystack/test/test_eval.py

180 lines
6.9 KiB
Python
Raw Normal View History

import pytest
from haystack.document_store.base import BaseDocumentStore
from haystack.preprocessor.preprocessor import PreProcessor
from haystack.eval import EvalAnswers, EvalDocuments
from haystack import Pipeline
@pytest.mark.parametrize("batch_size", [None, 20])
[RAG] Integrate "Retrieval-Augmented Generation" with Haystack (#484) * Adding dummy generator implementation * Adding tutorial to try the model * Committing current non working code * Committing current update where we need to call generate function directly and need to convert embedding to tensor way * Addressing review comments. * Refactoring finder, and implementing rag_generator class. * Refined the implementation of RAGGenerator and now it is in clean shape * Renaming RAGGenerator to RAGenerator * Reverting change from finder.py and addressing review comments * Remove support for RagSequenceForGeneration * Utilizing embed_passage function from DensePassageRetriever * Adding sample test data to verify generator output * Updating testing script * Updating testing script * Fixing bug related to top_k * Updating latest farm dependency * Comment out farm dependency * Reverting changes from TransformersReader * Adding transformers dataset to compare transformers and haystack generator implementation * Using generator_encoder instead of question_encoder to generate context_input_ids * Adding workaround to install FARM dependency from master branch * Removing unnecessary changes * Fixing generator test * Removing transformers datasets * Fixing generator test * Some cleanup and updating TODO comments * Adding tutorial notebook * Updating tutorials with comments * Explicitly passing token model in RAG test * Addressing review comments * Fixing notebook * Refactoring tests to reduce memory footprint * Split generator tests in separate ci step and before running it reclaim memory by terminating containers * Moving tika dependent test to separate dir * Remove unwanted code * Brining reader under session scope * Farm is now session object hence restoring changes from default value * Updating assert for pdf converter * Dummy commit to trigger CI flow * REducing memory footprint required for generator tests * Fixing mypy issues * Marking test with tika and elasticsearch markers. Reverting changes in CI and pytest splits * reducing changes * Fixing CI * changing elastic search ci * Fixing test error * Disabling return of embedding * Marking generator test as well * Refactoring tutorials * Increasing ES memory to 750M * Trying another fix for ES CI * Reverting CI changes * Splitting tests in CI * Generator and non-generator markers split * Adding pytest.ini to add markers and enable strict-markers option * Reducing elastic search container memory * Simplifying generator test by using documents with embedding directly * Bump up farm to 0.5.0
2020-10-30 18:06:02 +01:00
@pytest.mark.elasticsearch
def test_add_eval_data(document_store, batch_size):
# add eval data (SQUAD format)
document_store.add_eval_data(
filename="samples/squad/small.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
batch_size=batch_size,
)
assert document_store.get_document_count(index="haystack_test_eval_document") == 87
assert document_store.get_label_count(index="haystack_test_feedback") == 1214
# test documents
docs = document_store.get_all_documents(index="haystack_test_eval_document", filters={"name": ["Normans"]})
assert docs[0].meta["name"] == "Normans"
assert len(docs[0].meta.keys()) == 1
# test labels
labels = document_store.get_all_labels(index="haystack_test_feedback")
label = None
for l in labels:
if l.question == "In what country is Normandy located?":
label = l
break
assert label.answer == "France"
assert label.no_answer == False
assert label.is_correct_answer == True
assert label.is_correct_document == True
assert label.question == "In what country is Normandy located?"
assert label.origin == "gold_label"
assert label.offset_start_in_doc == 159
# check combination
doc = document_store.get_document_by_id(label.document_id, index="haystack_test_eval_document")
start = label.offset_start_in_doc
end = start + len(label.answer)
assert doc.text[start:end] == "France"
[RAG] Integrate "Retrieval-Augmented Generation" with Haystack (#484) * Adding dummy generator implementation * Adding tutorial to try the model * Committing current non working code * Committing current update where we need to call generate function directly and need to convert embedding to tensor way * Addressing review comments. * Refactoring finder, and implementing rag_generator class. * Refined the implementation of RAGGenerator and now it is in clean shape * Renaming RAGGenerator to RAGenerator * Reverting change from finder.py and addressing review comments * Remove support for RagSequenceForGeneration * Utilizing embed_passage function from DensePassageRetriever * Adding sample test data to verify generator output * Updating testing script * Updating testing script * Fixing bug related to top_k * Updating latest farm dependency * Comment out farm dependency * Reverting changes from TransformersReader * Adding transformers dataset to compare transformers and haystack generator implementation * Using generator_encoder instead of question_encoder to generate context_input_ids * Adding workaround to install FARM dependency from master branch * Removing unnecessary changes * Fixing generator test * Removing transformers datasets * Fixing generator test * Some cleanup and updating TODO comments * Adding tutorial notebook * Updating tutorials with comments * Explicitly passing token model in RAG test * Addressing review comments * Fixing notebook * Refactoring tests to reduce memory footprint * Split generator tests in separate ci step and before running it reclaim memory by terminating containers * Moving tika dependent test to separate dir * Remove unwanted code * Brining reader under session scope * Farm is now session object hence restoring changes from default value * Updating assert for pdf converter * Dummy commit to trigger CI flow * REducing memory footprint required for generator tests * Fixing mypy issues * Marking test with tika and elasticsearch markers. Reverting changes in CI and pytest splits * reducing changes * Fixing CI * changing elastic search ci * Fixing test error * Disabling return of embedding * Marking generator test as well * Refactoring tutorials * Increasing ES memory to 750M * Trying another fix for ES CI * Reverting CI changes * Splitting tests in CI * Generator and non-generator markers split * Adding pytest.ini to add markers and enable strict-markers option * Reducing elastic search container memory * Simplifying generator test by using documents with embedding directly * Bump up farm to 0.5.0
2020-10-30 18:06:02 +01:00
@pytest.mark.elasticsearch
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
def test_eval_reader(reader, document_store: BaseDocumentStore):
# add eval data (SQUAD format)
document_store.add_eval_data(
filename="samples/squad/tiny.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
)
assert document_store.get_document_count(index="haystack_test_eval_document") == 2
# eval reader
reader_eval_results = reader.eval(
document_store=document_store,
label_index="haystack_test_feedback",
doc_index="haystack_test_eval_document",
device="cpu",
)
assert reader_eval_results["f1"] > 66.65
assert reader_eval_results["f1"] < 66.67
assert reader_eval_results["EM"] == 50
assert reader_eval_results["top_n_accuracy"] == 100.0
[RAG] Integrate "Retrieval-Augmented Generation" with Haystack (#484) * Adding dummy generator implementation * Adding tutorial to try the model * Committing current non working code * Committing current update where we need to call generate function directly and need to convert embedding to tensor way * Addressing review comments. * Refactoring finder, and implementing rag_generator class. * Refined the implementation of RAGGenerator and now it is in clean shape * Renaming RAGGenerator to RAGenerator * Reverting change from finder.py and addressing review comments * Remove support for RagSequenceForGeneration * Utilizing embed_passage function from DensePassageRetriever * Adding sample test data to verify generator output * Updating testing script * Updating testing script * Fixing bug related to top_k * Updating latest farm dependency * Comment out farm dependency * Reverting changes from TransformersReader * Adding transformers dataset to compare transformers and haystack generator implementation * Using generator_encoder instead of question_encoder to generate context_input_ids * Adding workaround to install FARM dependency from master branch * Removing unnecessary changes * Fixing generator test * Removing transformers datasets * Fixing generator test * Some cleanup and updating TODO comments * Adding tutorial notebook * Updating tutorials with comments * Explicitly passing token model in RAG test * Addressing review comments * Fixing notebook * Refactoring tests to reduce memory footprint * Split generator tests in separate ci step and before running it reclaim memory by terminating containers * Moving tika dependent test to separate dir * Remove unwanted code * Brining reader under session scope * Farm is now session object hence restoring changes from default value * Updating assert for pdf converter * Dummy commit to trigger CI flow * REducing memory footprint required for generator tests * Fixing mypy issues * Marking test with tika and elasticsearch markers. Reverting changes in CI and pytest splits * reducing changes * Fixing CI * changing elastic search ci * Fixing test error * Disabling return of embedding * Marking generator test as well * Refactoring tutorials * Increasing ES memory to 750M * Trying another fix for ES CI * Reverting CI changes * Splitting tests in CI * Generator and non-generator markers split * Adding pytest.ini to add markers and enable strict-markers option * Reducing elastic search container memory * Simplifying generator test by using documents with embedding directly * Bump up farm to 0.5.0
2020-10-30 18:06:02 +01:00
@pytest.mark.elasticsearch
@pytest.mark.parametrize("document_store", ["elasticsearch"], indirect=True)
@pytest.mark.parametrize("open_domain", [True, False])
@pytest.mark.parametrize("retriever", ["elasticsearch"], indirect=True)
def test_eval_elastic_retriever(document_store: BaseDocumentStore, open_domain, retriever):
# add eval data (SQUAD format)
document_store.add_eval_data(
filename="samples/squad/tiny.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
)
assert document_store.get_document_count(index="haystack_test_eval_document") == 2
# eval retriever
results = retriever.eval(
top_k=1, label_index="haystack_test_feedback", doc_index="haystack_test_eval_document", open_domain=open_domain
)
assert results["recall"] == 1.0
assert results["mrr"] == 1.0
if not open_domain:
assert results["map"] == 1.0
@pytest.mark.elasticsearch
@pytest.mark.parametrize("document_store", ["elasticsearch"], indirect=True)
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
@pytest.mark.parametrize("retriever", ["elasticsearch"], indirect=True)
def test_eval_pipeline(document_store: BaseDocumentStore, reader, retriever):
# add eval data (SQUAD format)
document_store.add_eval_data(
filename="samples/squad/tiny.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
)
labels = document_store.get_all_labels_aggregated(index="haystack_test_feedback")
eval_retriever = EvalDocuments()
eval_reader = EvalAnswers(sas_model="sentence-transformers/paraphrase-MiniLM-L3-v2",debug=True)
eval_reader_cross = EvalAnswers(sas_model="cross-encoder/stsb-TinyBERT-L-4",debug=True)
eval_reader_vanila = EvalAnswers()
assert document_store.get_document_count(index="haystack_test_eval_document") == 2
p = Pipeline()
p.add_node(component=retriever, name="ESRetriever", inputs=["Query"])
p.add_node(component=eval_retriever, name="EvalDocuments", inputs=["ESRetriever"])
p.add_node(component=reader, name="QAReader", inputs=["EvalDocuments"])
p.add_node(component=eval_reader, name="EvalAnswers", inputs=["QAReader"])
p.add_node(component=eval_reader_cross, name="EvalAnswers_cross", inputs=["QAReader"])
p.add_node(component=eval_reader_vanila, name="EvalAnswers_vanilla", inputs=["QAReader"])
for l in labels:
res = p.run(
query=l.question,
labels=l,
params={"index": "haystack_test_eval_document"}
)
assert eval_retriever.recall == 1.0
assert round(eval_reader.top_k_f1, 4) == 0.8333
assert eval_reader.top_k_em == 0.5
assert round(eval_reader.top_k_sas, 3) == 0.800
assert round(eval_reader_cross.top_k_sas, 3) == 0.671
assert eval_reader.top_k_em == eval_reader_vanila.top_k_em
@pytest.mark.elasticsearch
def test_eval_data_split_word(document_store):
# splitting by word
preprocessor = PreProcessor(
clean_empty_lines=False,
clean_whitespace=False,
clean_header_footer=False,
split_by="word",
split_length=4,
split_overlap=0,
split_respect_sentence_boundary=False,
)
document_store.add_eval_data(
filename="samples/squad/tiny.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
preprocessor=preprocessor,
)
labels = document_store.get_all_labels_aggregated(index="haystack_test_feedback")
docs = document_store.get_all_documents(index="haystack_test_eval_document")
assert len(docs) == 5
assert len(set(labels[0].multiple_document_ids)) == 2
@pytest.mark.elasticsearch
def test_eval_data_split_passage(document_store):
# splitting by passage
preprocessor = PreProcessor(
clean_empty_lines=False,
clean_whitespace=False,
clean_header_footer=False,
split_by="passage",
split_length=1,
split_overlap=0,
split_respect_sentence_boundary=False
)
document_store.add_eval_data(
filename="samples/squad/tiny_passages.json",
doc_index="haystack_test_eval_document",
label_index="haystack_test_feedback",
preprocessor=preprocessor,
)
docs = document_store.get_all_documents(index="haystack_test_eval_document")
assert len(docs) == 2
assert len(docs[1].text) == 56