haystack/test/test_reader.py

101 lines
4.5 KiB
Python
Raw Normal View History

import math
2020-07-10 10:54:56 +02:00
from haystack.database.base import Document
from haystack.reader.base import BaseReader
from haystack.reader.farm import FARMReader
from haystack.reader.transformers import TransformersReader
2020-07-10 10:54:56 +02:00
def test_reader_basic(reader):
assert reader is not None
assert isinstance(reader, BaseReader)
def test_output(prediction):
assert prediction is not None
assert prediction["question"] == "Who lives in Berlin?"
assert prediction["answers"][0]["answer"] == "Carla"
assert prediction["answers"][0]["offset_start"] == 11
assert prediction["answers"][0]["offset_end"] == 16
assert prediction["answers"][0]["probability"] <= 1
assert prediction["answers"][0]["probability"] >= 0
assert prediction["answers"][0]["context"] == "My name is Carla and I live in Berlin"
assert prediction["answers"][0]["document_id"] == "filename1"
assert len(prediction["answers"]) == 5
def test_no_answer_output(no_answer_prediction):
assert no_answer_prediction is not None
assert no_answer_prediction["question"] == "What is the meaning of life?"
assert math.isclose(no_answer_prediction["no_ans_gap"], -14.4729533, rel_tol=0.0001)
assert no_answer_prediction["answers"][0]["answer"] is None
assert no_answer_prediction["answers"][0]["offset_start"] == 0
assert no_answer_prediction["answers"][0]["offset_end"] == 0
assert no_answer_prediction["answers"][0]["probability"] <= 1
assert no_answer_prediction["answers"][0]["probability"] >= 0
assert no_answer_prediction["answers"][0]["context"] == None
assert no_answer_prediction["answers"][0]["document_id"] == None
answers = [x["answer"] for x in no_answer_prediction["answers"]]
assert answers.count(None) == 1
assert len(no_answer_prediction["answers"]) == 5
# TODO Directly compare farm and transformers reader outputs
# TODO checks to see that model is responsive to input arguments e.g. context_window_size - topk
def test_prediction_attributes(prediction):
# TODO FARM's prediction also has no_ans_gap
attributes_gold = ["question", "answers"]
for ag in attributes_gold:
assert ag in prediction
def test_answer_attributes(prediction):
# TODO Transformers answer also has meta key
# TODO FARM answer has offset_start_in_doc, offset_end_in_doc
answer = prediction["answers"][0]
attributes_gold = ['answer', 'score', 'probability', 'context', 'offset_start', 'offset_end', 'document_id']
for ag in attributes_gold:
assert ag in answer
def test_context_window_size(test_docs_xs):
# TODO parametrize window_size and farm/transformers reader using pytest
2020-07-10 10:54:56 +02:00
docs = []
for d in test_docs_xs:
doc = Document(id=d["meta"]["name"], text=d["text"], meta=d["meta"])
2020-07-10 10:54:56 +02:00
docs.append(doc)
for window_size in [10, 15, 20]:
farm_reader = FARMReader(model_name_or_path="distilbert-base-uncased-distilled-squad",
use_gpu=False, top_k_per_sample=5, no_ans_boost=None, context_window_size=window_size)
prediction = farm_reader.predict(question="Who lives in Berlin?", documents=docs, top_k=5)
for answer in prediction["answers"]:
# If the extracted answer is larger than the context window, the context window is expanded.
# If the extracted answer is odd in length, the resulting context window is one less than context_window_size
# due to rounding (See FARM's QACandidate)
# TODO Currently the behaviour of context_window_size in FARMReader and TransformerReader is different
if len(answer["answer"]) <= window_size:
assert len(answer["context"]) in [window_size, window_size-1]
else:
assert len(answer["answer"]) == len(answer["context"])
# TODO Need to test transformers reader
# TODO Currently the behaviour of context_window_size in FARMReader and TransformerReader is different
def test_top_k(test_docs_xs):
# TODO parametrize top_k and farm/transformers reader using pytest
# TODO transformers reader was crashing when tested on this
docs = []
for d in test_docs_xs:
doc = Document(id=d["meta"]["name"], text=d["text"], meta=d["meta"])
docs.append(doc)
farm_reader = FARMReader(model_name_or_path="distilbert-base-uncased-distilled-squad",
use_gpu=False, top_k_per_sample=4, no_ans_boost=None, top_k_per_candidate=4)
for top_k in [2, 5, 10]:
prediction = farm_reader.predict(question="Who lives in Berlin?", documents=docs, top_k=top_k)
assert len(prediction["answers"]) == top_k