2020-07-14 18:53:15 +02:00
|
|
|
import math
|
2020-07-10 10:54:56 +02:00
|
|
|
|
|
|
|
from haystack.database.base import Document
|
2020-07-14 18:53:15 +02:00
|
|
|
from haystack.reader.base import BaseReader
|
|
|
|
from haystack.reader.farm import FARMReader
|
|
|
|
from haystack.reader.transformers import TransformersReader
|
|
|
|
|
2020-07-10 10:54:56 +02:00
|
|
|
|
|
|
|
|
|
|
|
def test_reader_basic(reader):
|
|
|
|
assert reader is not None
|
|
|
|
assert isinstance(reader, BaseReader)
|
|
|
|
|
|
|
|
|
2020-07-14 18:53:15 +02:00
|
|
|
def test_output(prediction):
|
|
|
|
assert prediction is not None
|
|
|
|
assert prediction["question"] == "Who lives in Berlin?"
|
|
|
|
assert prediction["answers"][0]["answer"] == "Carla"
|
|
|
|
assert prediction["answers"][0]["offset_start"] == 11
|
|
|
|
assert prediction["answers"][0]["offset_end"] == 16
|
|
|
|
assert prediction["answers"][0]["probability"] <= 1
|
|
|
|
assert prediction["answers"][0]["probability"] >= 0
|
|
|
|
assert prediction["answers"][0]["context"] == "My name is Carla and I live in Berlin"
|
|
|
|
assert prediction["answers"][0]["document_id"] == "filename1"
|
|
|
|
assert len(prediction["answers"]) == 5
|
|
|
|
|
|
|
|
|
|
|
|
def test_no_answer_output(no_answer_prediction):
|
|
|
|
assert no_answer_prediction is not None
|
|
|
|
assert no_answer_prediction["question"] == "What is the meaning of life?"
|
|
|
|
assert math.isclose(no_answer_prediction["no_ans_gap"], -14.4729533, rel_tol=0.0001)
|
|
|
|
assert no_answer_prediction["answers"][0]["answer"] is None
|
|
|
|
assert no_answer_prediction["answers"][0]["offset_start"] == 0
|
|
|
|
assert no_answer_prediction["answers"][0]["offset_end"] == 0
|
|
|
|
assert no_answer_prediction["answers"][0]["probability"] <= 1
|
|
|
|
assert no_answer_prediction["answers"][0]["probability"] >= 0
|
|
|
|
assert no_answer_prediction["answers"][0]["context"] == None
|
|
|
|
assert no_answer_prediction["answers"][0]["document_id"] == None
|
|
|
|
answers = [x["answer"] for x in no_answer_prediction["answers"]]
|
|
|
|
assert answers.count(None) == 1
|
|
|
|
assert len(no_answer_prediction["answers"]) == 5
|
|
|
|
|
|
|
|
# TODO Directly compare farm and transformers reader outputs
|
|
|
|
# TODO checks to see that model is responsive to input arguments e.g. context_window_size - topk
|
|
|
|
|
|
|
|
def test_prediction_attributes(prediction):
|
|
|
|
# TODO FARM's prediction also has no_ans_gap
|
|
|
|
attributes_gold = ["question", "answers"]
|
|
|
|
for ag in attributes_gold:
|
|
|
|
assert ag in prediction
|
|
|
|
|
|
|
|
|
|
|
|
def test_answer_attributes(prediction):
|
|
|
|
# TODO Transformers answer also has meta key
|
|
|
|
# TODO FARM answer has offset_start_in_doc, offset_end_in_doc
|
|
|
|
answer = prediction["answers"][0]
|
|
|
|
attributes_gold = ['answer', 'score', 'probability', 'context', 'offset_start', 'offset_end', 'document_id']
|
|
|
|
for ag in attributes_gold:
|
|
|
|
assert ag in answer
|
|
|
|
|
|
|
|
|
|
|
|
def test_context_window_size(test_docs_xs):
|
|
|
|
# TODO parametrize window_size and farm/transformers reader using pytest
|
2020-07-10 10:54:56 +02:00
|
|
|
docs = []
|
|
|
|
for d in test_docs_xs:
|
2020-07-14 09:53:31 +02:00
|
|
|
doc = Document(id=d["meta"]["name"], text=d["text"], meta=d["meta"])
|
2020-07-10 10:54:56 +02:00
|
|
|
docs.append(doc)
|
2020-07-14 18:53:15 +02:00
|
|
|
for window_size in [10, 15, 20]:
|
|
|
|
farm_reader = FARMReader(model_name_or_path="distilbert-base-uncased-distilled-squad",
|
|
|
|
use_gpu=False, top_k_per_sample=5, no_ans_boost=None, context_window_size=window_size)
|
|
|
|
prediction = farm_reader.predict(question="Who lives in Berlin?", documents=docs, top_k=5)
|
|
|
|
for answer in prediction["answers"]:
|
|
|
|
# If the extracted answer is larger than the context window, the context window is expanded.
|
|
|
|
# If the extracted answer is odd in length, the resulting context window is one less than context_window_size
|
|
|
|
# due to rounding (See FARM's QACandidate)
|
|
|
|
# TODO Currently the behaviour of context_window_size in FARMReader and TransformerReader is different
|
|
|
|
if len(answer["answer"]) <= window_size:
|
|
|
|
assert len(answer["context"]) in [window_size, window_size-1]
|
|
|
|
else:
|
|
|
|
assert len(answer["answer"]) == len(answer["context"])
|
|
|
|
|
|
|
|
# TODO Need to test transformers reader
|
|
|
|
# TODO Currently the behaviour of context_window_size in FARMReader and TransformerReader is different
|
|
|
|
|
|
|
|
|
|
|
|
def test_top_k(test_docs_xs):
|
|
|
|
# TODO parametrize top_k and farm/transformers reader using pytest
|
|
|
|
# TODO transformers reader was crashing when tested on this
|
|
|
|
docs = []
|
|
|
|
for d in test_docs_xs:
|
|
|
|
doc = Document(id=d["meta"]["name"], text=d["text"], meta=d["meta"])
|
|
|
|
docs.append(doc)
|
|
|
|
farm_reader = FARMReader(model_name_or_path="distilbert-base-uncased-distilled-squad",
|
|
|
|
use_gpu=False, top_k_per_sample=4, no_ans_boost=None, top_k_per_candidate=4)
|
|
|
|
for top_k in [2, 5, 10]:
|
|
|
|
prediction = farm_reader.predict(question="Who lives in Berlin?", documents=docs, top_k=top_k)
|
|
|
|
assert len(prediction["answers"]) == top_k
|
|
|
|
|
|
|
|
|
|
|
|
|