mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-19 15:01:40 +00:00
163 lines
6.6 KiB
Python
163 lines
6.6 KiB
Python
![]() |
from typing import Dict, Any
|
||
|
|
||
|
import pytest
|
||
|
|
||
|
from haystack.preview import Pipeline, DeserializationError
|
||
|
from haystack.preview.testing.factory import document_store_class
|
||
|
from haystack.preview.components.retrievers.memory_embedding_retriever import MemoryEmbeddingRetriever
|
||
|
from haystack.preview.dataclasses import Document
|
||
|
from haystack.preview.document_stores import MemoryDocumentStore
|
||
|
|
||
|
|
||
|
class TestMemoryEmbeddingRetriever:
|
||
|
@pytest.mark.unit
|
||
|
def test_init_default(self):
|
||
|
retriever = MemoryEmbeddingRetriever(MemoryDocumentStore())
|
||
|
assert retriever.filters is None
|
||
|
assert retriever.top_k == 10
|
||
|
assert retriever.scale_score
|
||
|
|
||
|
@pytest.mark.unit
|
||
|
def test_init_with_parameters(self):
|
||
|
retriever = MemoryEmbeddingRetriever(
|
||
|
MemoryDocumentStore(), filters={"name": "test.txt"}, top_k=5, scale_score=False
|
||
|
)
|
||
|
assert retriever.filters == {"name": "test.txt"}
|
||
|
assert retriever.top_k == 5
|
||
|
assert not retriever.scale_score
|
||
|
|
||
|
@pytest.mark.unit
|
||
|
def test_init_with_invalid_top_k_parameter(self):
|
||
|
with pytest.raises(ValueError, match="top_k must be > 0, but got -2"):
|
||
|
MemoryEmbeddingRetriever(MemoryDocumentStore(), top_k=-2, scale_score=False)
|
||
|
|
||
|
@pytest.mark.unit
|
||
|
def test_to_dict(self):
|
||
|
MyFakeStore = document_store_class("MyFakeStore", bases=(MemoryDocumentStore,))
|
||
|
document_store = MyFakeStore()
|
||
|
document_store.to_dict = lambda: {"type": "MyFakeStore", "init_parameters": {}}
|
||
|
component = MemoryEmbeddingRetriever(document_store=document_store)
|
||
|
|
||
|
data = component.to_dict()
|
||
|
assert data == {
|
||
|
"type": "MemoryEmbeddingRetriever",
|
||
|
"init_parameters": {
|
||
|
"document_store": {"type": "MyFakeStore", "init_parameters": {}},
|
||
|
"filters": None,
|
||
|
"top_k": 10,
|
||
|
"scale_score": True,
|
||
|
"return_embedding": False,
|
||
|
},
|
||
|
}
|
||
|
|
||
|
@pytest.mark.unit
|
||
|
def test_to_dict_with_custom_init_parameters(self):
|
||
|
MyFakeStore = document_store_class("MyFakeStore", bases=(MemoryDocumentStore,))
|
||
|
document_store = MyFakeStore()
|
||
|
document_store.to_dict = lambda: {"type": "MyFakeStore", "init_parameters": {}}
|
||
|
component = MemoryEmbeddingRetriever(
|
||
|
document_store=document_store,
|
||
|
filters={"name": "test.txt"},
|
||
|
top_k=5,
|
||
|
scale_score=False,
|
||
|
return_embedding=True,
|
||
|
)
|
||
|
data = component.to_dict()
|
||
|
assert data == {
|
||
|
"type": "MemoryEmbeddingRetriever",
|
||
|
"init_parameters": {
|
||
|
"document_store": {"type": "MyFakeStore", "init_parameters": {}},
|
||
|
"filters": {"name": "test.txt"},
|
||
|
"top_k": 5,
|
||
|
"scale_score": False,
|
||
|
"return_embedding": True,
|
||
|
},
|
||
|
}
|
||
|
|
||
|
@pytest.mark.unit
|
||
|
def test_from_dict(self):
|
||
|
document_store_class("MyFakeStore", bases=(MemoryDocumentStore,))
|
||
|
data = {
|
||
|
"type": "MemoryEmbeddingRetriever",
|
||
|
"init_parameters": {
|
||
|
"document_store": {"type": "MyFakeStore", "init_parameters": {}},
|
||
|
"filters": {"name": "test.txt"},
|
||
|
"top_k": 5,
|
||
|
},
|
||
|
}
|
||
|
component = MemoryEmbeddingRetriever.from_dict(data)
|
||
|
assert isinstance(component.document_store, MemoryDocumentStore)
|
||
|
assert component.filters == {"name": "test.txt"}
|
||
|
assert component.top_k == 5
|
||
|
assert component.scale_score
|
||
|
|
||
|
@pytest.mark.unit
|
||
|
def test_from_dict_without_docstore(self):
|
||
|
data = {"type": "MemoryEmbeddingRetriever", "init_parameters": {}}
|
||
|
with pytest.raises(DeserializationError, match="Missing 'document_store' in serialization data"):
|
||
|
MemoryEmbeddingRetriever.from_dict(data)
|
||
|
|
||
|
@pytest.mark.unit
|
||
|
def test_from_dict_without_docstore_type(self):
|
||
|
data = {"type": "MemoryEmbeddingRetriever", "init_parameters": {"document_store": {"init_parameters": {}}}}
|
||
|
with pytest.raises(DeserializationError, match="Missing 'type' in document store's serialization data"):
|
||
|
MemoryEmbeddingRetriever.from_dict(data)
|
||
|
|
||
|
@pytest.mark.unit
|
||
|
def test_from_dict_nonexisting_docstore(self):
|
||
|
data = {
|
||
|
"type": "MemoryEmbeddingRetriever",
|
||
|
"init_parameters": {"document_store": {"type": "NonexistingDocstore", "init_parameters": {}}},
|
||
|
}
|
||
|
with pytest.raises(DeserializationError, match="DocumentStore type 'NonexistingDocstore' not found"):
|
||
|
MemoryEmbeddingRetriever.from_dict(data)
|
||
|
|
||
|
@pytest.mark.unit
|
||
|
def test_valid_run(self):
|
||
|
top_k = 3
|
||
|
ds = MemoryDocumentStore(embedding_similarity_function="cosine")
|
||
|
docs = [
|
||
|
Document(text="my document", embedding=[0.1, 0.2, 0.3, 0.4]),
|
||
|
Document(text="another document", embedding=[1.0, 1.0, 1.0, 1.0]),
|
||
|
Document(text="third document", embedding=[0.5, 0.7, 0.5, 0.7]),
|
||
|
]
|
||
|
ds.write_documents(docs)
|
||
|
|
||
|
retriever = MemoryEmbeddingRetriever(ds, top_k=top_k)
|
||
|
result = retriever.run(query_embedding=[0.1, 0.1, 0.1, 0.1], return_embedding=True)
|
||
|
|
||
|
assert "documents" in result
|
||
|
assert len(result["documents"]) == top_k
|
||
|
assert result["documents"][0].embedding == [1.0, 1.0, 1.0, 1.0]
|
||
|
|
||
|
@pytest.mark.unit
|
||
|
def test_invalid_run_wrong_store_type(self):
|
||
|
SomeOtherDocumentStore = document_store_class("SomeOtherDocumentStore")
|
||
|
with pytest.raises(ValueError, match="document_store must be an instance of MemoryDocumentStore"):
|
||
|
MemoryEmbeddingRetriever(SomeOtherDocumentStore())
|
||
|
|
||
|
@pytest.mark.integration
|
||
|
def test_run_with_pipeline(self):
|
||
|
ds = MemoryDocumentStore(embedding_similarity_function="cosine")
|
||
|
top_k = 2
|
||
|
docs = [
|
||
|
Document(text="my document", embedding=[0.1, 0.2, 0.3, 0.4]),
|
||
|
Document(text="another document", embedding=[1.0, 1.0, 1.0, 1.0]),
|
||
|
Document(text="third document", embedding=[0.5, 0.7, 0.5, 0.7]),
|
||
|
]
|
||
|
ds.write_documents(docs)
|
||
|
retriever = MemoryEmbeddingRetriever(ds, top_k=top_k)
|
||
|
|
||
|
pipeline = Pipeline()
|
||
|
pipeline.add_component("retriever", retriever)
|
||
|
result: Dict[str, Any] = pipeline.run(
|
||
|
data={"retriever": {"query_embedding": [0.1, 0.1, 0.1, 0.1], "return_embedding": True}}
|
||
|
)
|
||
|
|
||
|
assert result
|
||
|
assert "retriever" in result
|
||
|
results_docs = result["retriever"]["documents"]
|
||
|
assert results_docs
|
||
|
assert len(results_docs) == top_k
|
||
|
assert results_docs[0].embedding == [1.0, 1.0, 1.0, 1.0]
|