haystack/test/conftest.py

443 lines
17 KiB
Python
Raw Normal View History

2020-09-15 15:04:46 +02:00
import subprocess
import time
2020-09-15 15:04:46 +02:00
from subprocess import run
from sys import platform
import pytest
2020-09-15 15:04:46 +02:00
import requests
from elasticsearch import Elasticsearch
from haystack.generator.transformers import Seq2SeqGenerator
knowledge graph example (#934) * Add knowledge graph module * Fix type hint * Add graph retriver module * Change type annotations, change return format * Add graph retriever that executes questions as sparql queries * Linking only those entities that are in the knowledge graph * Added logging and using relations extracted from Knowledge graph for linking * Preventing entity linking from linking the same token to multiple entities * Pruning triples that have no variables for select and count queries * Support knowledge graphs with Pipelines * Add text2sparql * Entity linking and relation linking consider more special cases now based on evaluation on labelled data * Separating example code from KGQA implementation * Add eval on combined extarctive and kg questions * Remove references to hp-test * Add fields sparql_query and long_answer_list to metadata * Removing modular Question2SPARQL approach * Removing additional classes used for modular kgqa approach * preparing lcquad data * change graph db * Translating namespaces in knowledge graph queries * Creating graphdb index and loading triples from .ttl file * Fetching graph config files, triples and model from S3 * Fix incompatibility issues with BaseGraphRetriever and BaseComponent * Removing unused utility functions * Adding doc strings and tutorial header * Adding sparqlwrapper dependency * Moving tutorial header * Sorting tutorials by number within name of notebook * Add latest docstring and tutorial changes * Creating test cases for knowledge graph * Changing knowledge graph example to harry potter * Add latest docstring and tutorial changes * Adapting the tutorial notebook to harry potter example * Add GraphDB fixture for tests * Add latest docstring and tutorial changes * Added GraphDB docker launch to CI * Use correct GraphDB fixture * Check if GraphDB instance is already running * Renaming question/query and incorporating other feedback from Timo and Tanay * Removed type annotation * Add latest docstring and tutorial changes Co-authored-by: oryx1729 <oryx1729@protonmail.com> Co-authored-by: Timo Moeller <timo.moeller@deepset.ai> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-04-08 14:05:33 +02:00
from haystack.knowledge_graph.graphdb import GraphDBKnowledgeGraph
from milvus import Milvus
import weaviate
from haystack.document_store.weaviate import WeaviateDocumentStore
from haystack.document_store.milvus import MilvusDocumentStore
[RAG] Integrate "Retrieval-Augmented Generation" with Haystack (#484) * Adding dummy generator implementation * Adding tutorial to try the model * Committing current non working code * Committing current update where we need to call generate function directly and need to convert embedding to tensor way * Addressing review comments. * Refactoring finder, and implementing rag_generator class. * Refined the implementation of RAGGenerator and now it is in clean shape * Renaming RAGGenerator to RAGenerator * Reverting change from finder.py and addressing review comments * Remove support for RagSequenceForGeneration * Utilizing embed_passage function from DensePassageRetriever * Adding sample test data to verify generator output * Updating testing script * Updating testing script * Fixing bug related to top_k * Updating latest farm dependency * Comment out farm dependency * Reverting changes from TransformersReader * Adding transformers dataset to compare transformers and haystack generator implementation * Using generator_encoder instead of question_encoder to generate context_input_ids * Adding workaround to install FARM dependency from master branch * Removing unnecessary changes * Fixing generator test * Removing transformers datasets * Fixing generator test * Some cleanup and updating TODO comments * Adding tutorial notebook * Updating tutorials with comments * Explicitly passing token model in RAG test * Addressing review comments * Fixing notebook * Refactoring tests to reduce memory footprint * Split generator tests in separate ci step and before running it reclaim memory by terminating containers * Moving tika dependent test to separate dir * Remove unwanted code * Brining reader under session scope * Farm is now session object hence restoring changes from default value * Updating assert for pdf converter * Dummy commit to trigger CI flow * REducing memory footprint required for generator tests * Fixing mypy issues * Marking test with tika and elasticsearch markers. Reverting changes in CI and pytest splits * reducing changes * Fixing CI * changing elastic search ci * Fixing test error * Disabling return of embedding * Marking generator test as well * Refactoring tutorials * Increasing ES memory to 750M * Trying another fix for ES CI * Reverting CI changes * Splitting tests in CI * Generator and non-generator markers split * Adding pytest.ini to add markers and enable strict-markers option * Reducing elastic search container memory * Simplifying generator test by using documents with embedding directly * Bump up farm to 0.5.0
2020-10-30 18:06:02 +01:00
from haystack.generator.transformers import RAGenerator, RAGeneratorType
from haystack.ranker import FARMRanker, SentenceTransformersRanker
[RAG] Integrate "Retrieval-Augmented Generation" with Haystack (#484) * Adding dummy generator implementation * Adding tutorial to try the model * Committing current non working code * Committing current update where we need to call generate function directly and need to convert embedding to tensor way * Addressing review comments. * Refactoring finder, and implementing rag_generator class. * Refined the implementation of RAGGenerator and now it is in clean shape * Renaming RAGGenerator to RAGenerator * Reverting change from finder.py and addressing review comments * Remove support for RagSequenceForGeneration * Utilizing embed_passage function from DensePassageRetriever * Adding sample test data to verify generator output * Updating testing script * Updating testing script * Fixing bug related to top_k * Updating latest farm dependency * Comment out farm dependency * Reverting changes from TransformersReader * Adding transformers dataset to compare transformers and haystack generator implementation * Using generator_encoder instead of question_encoder to generate context_input_ids * Adding workaround to install FARM dependency from master branch * Removing unnecessary changes * Fixing generator test * Removing transformers datasets * Fixing generator test * Some cleanup and updating TODO comments * Adding tutorial notebook * Updating tutorials with comments * Explicitly passing token model in RAG test * Addressing review comments * Fixing notebook * Refactoring tests to reduce memory footprint * Split generator tests in separate ci step and before running it reclaim memory by terminating containers * Moving tika dependent test to separate dir * Remove unwanted code * Brining reader under session scope * Farm is now session object hence restoring changes from default value * Updating assert for pdf converter * Dummy commit to trigger CI flow * REducing memory footprint required for generator tests * Fixing mypy issues * Marking test with tika and elasticsearch markers. Reverting changes in CI and pytest splits * reducing changes * Fixing CI * changing elastic search ci * Fixing test error * Disabling return of embedding * Marking generator test as well * Refactoring tutorials * Increasing ES memory to 750M * Trying another fix for ES CI * Reverting CI changes * Splitting tests in CI * Generator and non-generator markers split * Adding pytest.ini to add markers and enable strict-markers option * Reducing elastic search container memory * Simplifying generator test by using documents with embedding directly * Bump up farm to 0.5.0
2020-10-30 18:06:02 +01:00
from haystack.retriever.sparse import ElasticsearchFilterOnlyRetriever, ElasticsearchRetriever, TfidfRetriever
from haystack.retriever.dense import DensePassageRetriever, EmbeddingRetriever
from haystack import Document
from haystack.document_store.elasticsearch import ElasticsearchDocumentStore
from haystack.document_store.faiss import FAISSDocumentStore
from haystack.document_store.memory import InMemoryDocumentStore
from haystack.document_store.sql import SQLDocumentStore
2020-07-10 10:54:56 +02:00
from haystack.reader.farm import FARMReader
from haystack.reader.transformers import TransformersReader
from haystack.summarizer.transformers import TransformersSummarizer
from haystack.translator import TransformersTranslator
2020-07-10 10:54:56 +02:00
def pytest_addoption(parser):
parser.addoption("--document_store_type", action="store", default="all")
def pytest_generate_tests(metafunc):
# parametrize document_store fixture if it's in the test function argument list
# but does not have an explicit parametrize annotation e.g
# @pytest.mark.parametrize("document_store", ["memory"], indirect=False)
found_mark_parametrize_document_store = False
for marker in metafunc.definition.iter_markers('parametrize'):
if 'document_store' in marker.args[0]:
found_mark_parametrize_document_store = True
break
if 'document_store' in metafunc.fixturenames and not found_mark_parametrize_document_store:
document_store_type = metafunc.config.option.document_store_type
if "all" in document_store_type:
document_store_type = "elasticsearch, faiss, memory, milvus"
document_store_types = [item.strip() for item in document_store_type.split(",")]
metafunc.parametrize("document_store", document_store_types, indirect=True)
def _sql_session_rollback(self, attr):
"""
Inject SQLDocumentStore at runtime to do a session rollback each time it is called. This allows to catch
errors where an intended operation is still in a transaction, but not committed to the database.
"""
method = object.__getattribute__(self, attr)
if callable(method):
try:
self.session.rollback()
except AttributeError:
pass
return method
SQLDocumentStore.__getattribute__ = _sql_session_rollback
[RAG] Integrate "Retrieval-Augmented Generation" with Haystack (#484) * Adding dummy generator implementation * Adding tutorial to try the model * Committing current non working code * Committing current update where we need to call generate function directly and need to convert embedding to tensor way * Addressing review comments. * Refactoring finder, and implementing rag_generator class. * Refined the implementation of RAGGenerator and now it is in clean shape * Renaming RAGGenerator to RAGenerator * Reverting change from finder.py and addressing review comments * Remove support for RagSequenceForGeneration * Utilizing embed_passage function from DensePassageRetriever * Adding sample test data to verify generator output * Updating testing script * Updating testing script * Fixing bug related to top_k * Updating latest farm dependency * Comment out farm dependency * Reverting changes from TransformersReader * Adding transformers dataset to compare transformers and haystack generator implementation * Using generator_encoder instead of question_encoder to generate context_input_ids * Adding workaround to install FARM dependency from master branch * Removing unnecessary changes * Fixing generator test * Removing transformers datasets * Fixing generator test * Some cleanup and updating TODO comments * Adding tutorial notebook * Updating tutorials with comments * Explicitly passing token model in RAG test * Addressing review comments * Fixing notebook * Refactoring tests to reduce memory footprint * Split generator tests in separate ci step and before running it reclaim memory by terminating containers * Moving tika dependent test to separate dir * Remove unwanted code * Brining reader under session scope * Farm is now session object hence restoring changes from default value * Updating assert for pdf converter * Dummy commit to trigger CI flow * REducing memory footprint required for generator tests * Fixing mypy issues * Marking test with tika and elasticsearch markers. Reverting changes in CI and pytest splits * reducing changes * Fixing CI * changing elastic search ci * Fixing test error * Disabling return of embedding * Marking generator test as well * Refactoring tutorials * Increasing ES memory to 750M * Trying another fix for ES CI * Reverting CI changes * Splitting tests in CI * Generator and non-generator markers split * Adding pytest.ini to add markers and enable strict-markers option * Reducing elastic search container memory * Simplifying generator test by using documents with embedding directly * Bump up farm to 0.5.0
2020-10-30 18:06:02 +01:00
def pytest_collection_modifyitems(items):
for item in items:
if "generator" in item.nodeid:
item.add_marker(pytest.mark.generator)
elif "summarizer" in item.nodeid:
item.add_marker(pytest.mark.summarizer)
[RAG] Integrate "Retrieval-Augmented Generation" with Haystack (#484) * Adding dummy generator implementation * Adding tutorial to try the model * Committing current non working code * Committing current update where we need to call generate function directly and need to convert embedding to tensor way * Addressing review comments. * Refactoring finder, and implementing rag_generator class. * Refined the implementation of RAGGenerator and now it is in clean shape * Renaming RAGGenerator to RAGenerator * Reverting change from finder.py and addressing review comments * Remove support for RagSequenceForGeneration * Utilizing embed_passage function from DensePassageRetriever * Adding sample test data to verify generator output * Updating testing script * Updating testing script * Fixing bug related to top_k * Updating latest farm dependency * Comment out farm dependency * Reverting changes from TransformersReader * Adding transformers dataset to compare transformers and haystack generator implementation * Using generator_encoder instead of question_encoder to generate context_input_ids * Adding workaround to install FARM dependency from master branch * Removing unnecessary changes * Fixing generator test * Removing transformers datasets * Fixing generator test * Some cleanup and updating TODO comments * Adding tutorial notebook * Updating tutorials with comments * Explicitly passing token model in RAG test * Addressing review comments * Fixing notebook * Refactoring tests to reduce memory footprint * Split generator tests in separate ci step and before running it reclaim memory by terminating containers * Moving tika dependent test to separate dir * Remove unwanted code * Brining reader under session scope * Farm is now session object hence restoring changes from default value * Updating assert for pdf converter * Dummy commit to trigger CI flow * REducing memory footprint required for generator tests * Fixing mypy issues * Marking test with tika and elasticsearch markers. Reverting changes in CI and pytest splits * reducing changes * Fixing CI * changing elastic search ci * Fixing test error * Disabling return of embedding * Marking generator test as well * Refactoring tutorials * Increasing ES memory to 750M * Trying another fix for ES CI * Reverting CI changes * Splitting tests in CI * Generator and non-generator markers split * Adding pytest.ini to add markers and enable strict-markers option * Reducing elastic search container memory * Simplifying generator test by using documents with embedding directly * Bump up farm to 0.5.0
2020-10-30 18:06:02 +01:00
elif "tika" in item.nodeid:
item.add_marker(pytest.mark.tika)
elif "elasticsearch" in item.nodeid:
item.add_marker(pytest.mark.elasticsearch)
knowledge graph example (#934) * Add knowledge graph module * Fix type hint * Add graph retriver module * Change type annotations, change return format * Add graph retriever that executes questions as sparql queries * Linking only those entities that are in the knowledge graph * Added logging and using relations extracted from Knowledge graph for linking * Preventing entity linking from linking the same token to multiple entities * Pruning triples that have no variables for select and count queries * Support knowledge graphs with Pipelines * Add text2sparql * Entity linking and relation linking consider more special cases now based on evaluation on labelled data * Separating example code from KGQA implementation * Add eval on combined extarctive and kg questions * Remove references to hp-test * Add fields sparql_query and long_answer_list to metadata * Removing modular Question2SPARQL approach * Removing additional classes used for modular kgqa approach * preparing lcquad data * change graph db * Translating namespaces in knowledge graph queries * Creating graphdb index and loading triples from .ttl file * Fetching graph config files, triples and model from S3 * Fix incompatibility issues with BaseGraphRetriever and BaseComponent * Removing unused utility functions * Adding doc strings and tutorial header * Adding sparqlwrapper dependency * Moving tutorial header * Sorting tutorials by number within name of notebook * Add latest docstring and tutorial changes * Creating test cases for knowledge graph * Changing knowledge graph example to harry potter * Add latest docstring and tutorial changes * Adapting the tutorial notebook to harry potter example * Add GraphDB fixture for tests * Add latest docstring and tutorial changes * Added GraphDB docker launch to CI * Use correct GraphDB fixture * Check if GraphDB instance is already running * Renaming question/query and incorporating other feedback from Timo and Tanay * Removed type annotation * Add latest docstring and tutorial changes Co-authored-by: oryx1729 <oryx1729@protonmail.com> Co-authored-by: Timo Moeller <timo.moeller@deepset.ai> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-04-08 14:05:33 +02:00
elif "graphdb" in item.nodeid:
item.add_marker(pytest.mark.graphdb)
elif "pipeline" in item.nodeid:
item.add_marker(pytest.mark.pipeline)
[RAG] Integrate "Retrieval-Augmented Generation" with Haystack (#484) * Adding dummy generator implementation * Adding tutorial to try the model * Committing current non working code * Committing current update where we need to call generate function directly and need to convert embedding to tensor way * Addressing review comments. * Refactoring finder, and implementing rag_generator class. * Refined the implementation of RAGGenerator and now it is in clean shape * Renaming RAGGenerator to RAGenerator * Reverting change from finder.py and addressing review comments * Remove support for RagSequenceForGeneration * Utilizing embed_passage function from DensePassageRetriever * Adding sample test data to verify generator output * Updating testing script * Updating testing script * Fixing bug related to top_k * Updating latest farm dependency * Comment out farm dependency * Reverting changes from TransformersReader * Adding transformers dataset to compare transformers and haystack generator implementation * Using generator_encoder instead of question_encoder to generate context_input_ids * Adding workaround to install FARM dependency from master branch * Removing unnecessary changes * Fixing generator test * Removing transformers datasets * Fixing generator test * Some cleanup and updating TODO comments * Adding tutorial notebook * Updating tutorials with comments * Explicitly passing token model in RAG test * Addressing review comments * Fixing notebook * Refactoring tests to reduce memory footprint * Split generator tests in separate ci step and before running it reclaim memory by terminating containers * Moving tika dependent test to separate dir * Remove unwanted code * Brining reader under session scope * Farm is now session object hence restoring changes from default value * Updating assert for pdf converter * Dummy commit to trigger CI flow * REducing memory footprint required for generator tests * Fixing mypy issues * Marking test with tika and elasticsearch markers. Reverting changes in CI and pytest splits * reducing changes * Fixing CI * changing elastic search ci * Fixing test error * Disabling return of embedding * Marking generator test as well * Refactoring tutorials * Increasing ES memory to 750M * Trying another fix for ES CI * Reverting CI changes * Splitting tests in CI * Generator and non-generator markers split * Adding pytest.ini to add markers and enable strict-markers option * Reducing elastic search container memory * Simplifying generator test by using documents with embedding directly * Bump up farm to 0.5.0
2020-10-30 18:06:02 +01:00
elif "slow" in item.nodeid:
item.add_marker(pytest.mark.slow)
elif "weaviate" in item.nodeid:
item.add_marker(pytest.mark.weaviate)
[RAG] Integrate "Retrieval-Augmented Generation" with Haystack (#484) * Adding dummy generator implementation * Adding tutorial to try the model * Committing current non working code * Committing current update where we need to call generate function directly and need to convert embedding to tensor way * Addressing review comments. * Refactoring finder, and implementing rag_generator class. * Refined the implementation of RAGGenerator and now it is in clean shape * Renaming RAGGenerator to RAGenerator * Reverting change from finder.py and addressing review comments * Remove support for RagSequenceForGeneration * Utilizing embed_passage function from DensePassageRetriever * Adding sample test data to verify generator output * Updating testing script * Updating testing script * Fixing bug related to top_k * Updating latest farm dependency * Comment out farm dependency * Reverting changes from TransformersReader * Adding transformers dataset to compare transformers and haystack generator implementation * Using generator_encoder instead of question_encoder to generate context_input_ids * Adding workaround to install FARM dependency from master branch * Removing unnecessary changes * Fixing generator test * Removing transformers datasets * Fixing generator test * Some cleanup and updating TODO comments * Adding tutorial notebook * Updating tutorials with comments * Explicitly passing token model in RAG test * Addressing review comments * Fixing notebook * Refactoring tests to reduce memory footprint * Split generator tests in separate ci step and before running it reclaim memory by terminating containers * Moving tika dependent test to separate dir * Remove unwanted code * Brining reader under session scope * Farm is now session object hence restoring changes from default value * Updating assert for pdf converter * Dummy commit to trigger CI flow * REducing memory footprint required for generator tests * Fixing mypy issues * Marking test with tika and elasticsearch markers. Reverting changes in CI and pytest splits * reducing changes * Fixing CI * changing elastic search ci * Fixing test error * Disabling return of embedding * Marking generator test as well * Refactoring tutorials * Increasing ES memory to 750M * Trying another fix for ES CI * Reverting CI changes * Splitting tests in CI * Generator and non-generator markers split * Adding pytest.ini to add markers and enable strict-markers option * Reducing elastic search container memory * Simplifying generator test by using documents with embedding directly * Bump up farm to 0.5.0
2020-10-30 18:06:02 +01:00
@pytest.fixture(scope="session")
2020-09-15 15:04:46 +02:00
def elasticsearch_fixture():
# test if a ES cluster is already running. If not, download and start an ES instance locally.
try:
2020-09-15 15:04:46 +02:00
client = Elasticsearch(hosts=[{"host": "localhost", "port": "9200"}])
client.info()
except:
2020-09-15 15:04:46 +02:00
print("Starting Elasticsearch ...")
status = subprocess.run(
['docker rm haystack_test_elastic'],
shell=True
)
status = subprocess.run(
['docker run -d --name haystack_test_elastic -p 9200:9200 -e "discovery.type=single-node" elasticsearch:7.9.2'],
2020-09-15 15:04:46 +02:00
shell=True
)
if status.returncode:
raise Exception(
"Failed to launch Elasticsearch. Please check docker container logs.")
time.sleep(30)
@pytest.fixture(scope="session")
def milvus_fixture():
# test if a Milvus server is already running. If not, start Milvus docker container locally.
# Make sure you have given > 6GB memory to docker engine
try:
milvus_server = Milvus(uri="tcp://localhost:19530", timeout=5, wait_timeout=5)
milvus_server.server_status(timeout=5)
except:
print("Starting Milvus ...")
status = subprocess.run(['docker run -d --name milvus_cpu_0.10.5 -p 19530:19530 -p 19121:19121 '
'milvusdb/milvus:0.10.5-cpu-d010621-4eda95'], shell=True)
time.sleep(40)
@pytest.fixture(scope="session")
def weaviate_fixture():
# test if a Weaviate server is already running. If not, start Weaviate docker container locally.
# Make sure you have given > 6GB memory to docker engine
try:
weaviate_server = weaviate.Client(url='http://localhost:8080', timeout_config=(5, 15))
weaviate_server.is_ready()
except:
print("Starting Weaviate servers ...")
status = subprocess.run(
['docker rm haystack_test_weaviate'],
shell=True
)
status = subprocess.run(
['docker run -d --name haystack_test_weaviate -p 8080:8080 semitechnologies/weaviate:1.4.0'],
shell=True
)
if status.returncode:
raise Exception(
"Failed to launch Weaviate. Please check docker container logs.")
time.sleep(60)
knowledge graph example (#934) * Add knowledge graph module * Fix type hint * Add graph retriver module * Change type annotations, change return format * Add graph retriever that executes questions as sparql queries * Linking only those entities that are in the knowledge graph * Added logging and using relations extracted from Knowledge graph for linking * Preventing entity linking from linking the same token to multiple entities * Pruning triples that have no variables for select and count queries * Support knowledge graphs with Pipelines * Add text2sparql * Entity linking and relation linking consider more special cases now based on evaluation on labelled data * Separating example code from KGQA implementation * Add eval on combined extarctive and kg questions * Remove references to hp-test * Add fields sparql_query and long_answer_list to metadata * Removing modular Question2SPARQL approach * Removing additional classes used for modular kgqa approach * preparing lcquad data * change graph db * Translating namespaces in knowledge graph queries * Creating graphdb index and loading triples from .ttl file * Fetching graph config files, triples and model from S3 * Fix incompatibility issues with BaseGraphRetriever and BaseComponent * Removing unused utility functions * Adding doc strings and tutorial header * Adding sparqlwrapper dependency * Moving tutorial header * Sorting tutorials by number within name of notebook * Add latest docstring and tutorial changes * Creating test cases for knowledge graph * Changing knowledge graph example to harry potter * Add latest docstring and tutorial changes * Adapting the tutorial notebook to harry potter example * Add GraphDB fixture for tests * Add latest docstring and tutorial changes * Added GraphDB docker launch to CI * Use correct GraphDB fixture * Check if GraphDB instance is already running * Renaming question/query and incorporating other feedback from Timo and Tanay * Removed type annotation * Add latest docstring and tutorial changes Co-authored-by: oryx1729 <oryx1729@protonmail.com> Co-authored-by: Timo Moeller <timo.moeller@deepset.ai> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-04-08 14:05:33 +02:00
@pytest.fixture(scope="session")
def graphdb_fixture():
# test if a GraphDB instance is already running. If not, download and start a GraphDB instance locally.
try:
kg = GraphDBKnowledgeGraph()
# fail if not running GraphDB
kg.delete_index()
except:
print("Starting GraphDB ...")
status = subprocess.run(
['docker rm haystack_test_graphdb'],
shell=True
)
status = subprocess.run(
['docker run -d -p 7200:7200 --name haystack_test_graphdb docker-registry.ontotext.com/graphdb-free:9.4.1-adoptopenjdk11'],
shell=True
)
if status.returncode:
raise Exception(
"Failed to launch GraphDB. Please check docker container logs.")
time.sleep(30)
2020-09-15 15:04:46 +02:00
@pytest.fixture(scope="session")
def tika_fixture():
try:
tika_url = "http://localhost:9998/tika"
ping = requests.get(tika_url)
if ping.status_code != 200:
raise Exception(
"Unable to connect Tika. Please check tika endpoint {0}.".format(tika_url))
except:
print("Starting Tika ...")
status = subprocess.run(
['docker run -d --name tika -p 9998:9998 apache/tika:1.24.1'],
shell=True
)
if status.returncode:
raise Exception(
"Failed to launch Tika. Please check docker container logs.")
time.sleep(30)
2020-06-08 11:07:19 +02:00
@pytest.fixture(scope="session")
2020-09-15 15:04:46 +02:00
def xpdf_fixture(tika_fixture):
2020-06-08 11:07:19 +02:00
verify_installation = run(["pdftotext"], shell=True)
if verify_installation.returncode == 127:
2020-09-15 15:04:46 +02:00
if platform.startswith("linux"):
platform_id = "linux"
sudo_prefix = "sudo"
elif platform.startswith("darwin"):
platform_id = "mac"
# For Mac, generally sudo need password in interactive console.
# But most of the cases current user already have permission to copy to /user/local/bin.
# Hence removing sudo requirement for Mac.
sudo_prefix = ""
else:
raise Exception(
"""Currently auto installation of pdftotext is not supported on {0} platform """.format(platform)
)
2021-02-12 13:38:54 +01:00
commands = """ wget --no-check-certificate https://dl.xpdfreader.com/xpdf-tools-{0}-4.03.tar.gz &&
tar -xvf xpdf-tools-{0}-4.03.tar.gz &&
{1} cp xpdf-tools-{0}-4.03/bin64/pdftotext /usr/local/bin""".format(platform_id, sudo_prefix)
2020-06-08 11:07:19 +02:00
run([commands], shell=True)
verify_installation = run(["pdftotext -v"], shell=True)
if verify_installation.returncode == 127:
raise Exception(
"""pdftotext is not installed. It is part of xpdf or poppler-utils software suite.
You can download for your OS from here: https://www.xpdfreader.com/download.html."""
)
2020-07-10 10:54:56 +02:00
2020-08-17 11:21:09 +02:00
@pytest.fixture(scope="module")
[RAG] Integrate "Retrieval-Augmented Generation" with Haystack (#484) * Adding dummy generator implementation * Adding tutorial to try the model * Committing current non working code * Committing current update where we need to call generate function directly and need to convert embedding to tensor way * Addressing review comments. * Refactoring finder, and implementing rag_generator class. * Refined the implementation of RAGGenerator and now it is in clean shape * Renaming RAGGenerator to RAGenerator * Reverting change from finder.py and addressing review comments * Remove support for RagSequenceForGeneration * Utilizing embed_passage function from DensePassageRetriever * Adding sample test data to verify generator output * Updating testing script * Updating testing script * Fixing bug related to top_k * Updating latest farm dependency * Comment out farm dependency * Reverting changes from TransformersReader * Adding transformers dataset to compare transformers and haystack generator implementation * Using generator_encoder instead of question_encoder to generate context_input_ids * Adding workaround to install FARM dependency from master branch * Removing unnecessary changes * Fixing generator test * Removing transformers datasets * Fixing generator test * Some cleanup and updating TODO comments * Adding tutorial notebook * Updating tutorials with comments * Explicitly passing token model in RAG test * Addressing review comments * Fixing notebook * Refactoring tests to reduce memory footprint * Split generator tests in separate ci step and before running it reclaim memory by terminating containers * Moving tika dependent test to separate dir * Remove unwanted code * Brining reader under session scope * Farm is now session object hence restoring changes from default value * Updating assert for pdf converter * Dummy commit to trigger CI flow * REducing memory footprint required for generator tests * Fixing mypy issues * Marking test with tika and elasticsearch markers. Reverting changes in CI and pytest splits * reducing changes * Fixing CI * changing elastic search ci * Fixing test error * Disabling return of embedding * Marking generator test as well * Refactoring tutorials * Increasing ES memory to 750M * Trying another fix for ES CI * Reverting CI changes * Splitting tests in CI * Generator and non-generator markers split * Adding pytest.ini to add markers and enable strict-markers option * Reducing elastic search container memory * Simplifying generator test by using documents with embedding directly * Bump up farm to 0.5.0
2020-10-30 18:06:02 +01:00
def rag_generator():
return RAGenerator(
model_name_or_path="facebook/rag-token-nq",
generator_type=RAGeneratorType.TOKEN
)
@pytest.fixture(scope="module")
def eli5_generator():
return Seq2SeqGenerator(model_name_or_path="yjernite/bart_eli5")
@pytest.fixture(scope="module")
def summarizer():
return TransformersSummarizer(
model_name_or_path="google/pegasus-xsum",
use_gpu=-1
)
@pytest.fixture(scope="module")
def en_to_de_translator():
return TransformersTranslator(
model_name_or_path="Helsinki-NLP/opus-mt-en-de",
)
@pytest.fixture(scope="module")
def de_to_en_translator():
return TransformersTranslator(
model_name_or_path="Helsinki-NLP/opus-mt-de-en",
)
@pytest.fixture(scope="module")
2020-07-10 10:54:56 +02:00
def test_docs_xs():
return [
# current "dict" format for a document
{"text": "My name is Carla and I live in Berlin", "meta": {"meta_field": "test1", "name": "filename1"}},
# meta_field at the top level for backward compatibility
{"text": "My name is Paul and I live in New York", "meta_field": "test2", "name": "filename2"},
# Document object for a doc
Document(text="My name is Christelle and I live in Paris", meta={"meta_field": "test3", "name": "filename3"})
2020-07-10 10:54:56 +02:00
]
@pytest.fixture(params=["farm", "transformers"], scope="module")
def reader(request):
2020-07-10 10:54:56 +02:00
if request.param == "farm":
return FARMReader(
model_name_or_path="distilbert-base-uncased-distilled-squad",
use_gpu=False,
top_k_per_sample=5,
num_processes=0
)
2020-07-10 10:54:56 +02:00
if request.param == "transformers":
return TransformersReader(
model_name_or_path="distilbert-base-uncased-distilled-squad",
tokenizer="distilbert-base-uncased",
use_gpu=-1
)
2020-07-10 10:54:56 +02:00
@pytest.fixture(params=["farm", "sentencetransformers"], scope="module")
def ranker(request):
if request.param == "farm":
return FARMRanker(
model_name_or_path="deepset/gbert-base-germandpr-reranking"
)
if request.param == "sentencetransformers":
return SentenceTransformersRanker(
model_name_or_path="cross-encoder/ms-marco-MiniLM-L-12-v2",
)
2020-07-10 10:54:56 +02:00
# TODO Fix bug in test_no_answer_output when using
# @pytest.fixture(params=["farm", "transformers"])
@pytest.fixture(params=["farm"], scope="module")
def no_answer_reader(request):
if request.param == "farm":
return FARMReader(
model_name_or_path="deepset/roberta-base-squad2",
use_gpu=False,
top_k_per_sample=5,
no_ans_boost=0,
return_no_answer=True,
num_processes=0
)
if request.param == "transformers":
return TransformersReader(
model_name_or_path="deepset/roberta-base-squad2",
tokenizer="deepset/roberta-base-squad2",
use_gpu=-1,
top_k_per_candidate=5
)
@pytest.fixture(scope="module")
def prediction(reader, test_docs_xs):
docs = [Document.from_dict(d) if isinstance(d, dict) else d for d in test_docs_xs]
prediction = reader.predict(query="Who lives in Berlin?", documents=docs, top_k=5)
return prediction
@pytest.fixture(scope="module")
def no_answer_prediction(no_answer_reader, test_docs_xs):
docs = [Document.from_dict(d) if isinstance(d, dict) else d for d in test_docs_xs]
prediction = no_answer_reader.predict(query="What is the meaning of life?", documents=docs, top_k=5)
return prediction
@pytest.fixture(params=["es_filter_only", "elasticsearch", "dpr", "embedding", "tfidf"])
def retriever(request, document_store):
return get_retriever(request.param, document_store)
@pytest.fixture(params=["es_filter_only", "elasticsearch", "dpr", "embedding", "tfidf"])
def retriever_with_docs(request, document_store_with_docs):
return get_retriever(request.param, document_store_with_docs)
def get_retriever(retriever_type, document_store):
if retriever_type == "dpr":
retriever = DensePassageRetriever(document_store=document_store,
query_embedding_model="facebook/dpr-question_encoder-single-nq-base",
passage_embedding_model="facebook/dpr-ctx_encoder-single-nq-base",
use_gpu=False, embed_title=True)
elif retriever_type == "tfidf":
retriever = TfidfRetriever(document_store=document_store)
retriever.fit()
elif retriever_type == "embedding":
[RAG] Integrate "Retrieval-Augmented Generation" with Haystack (#484) * Adding dummy generator implementation * Adding tutorial to try the model * Committing current non working code * Committing current update where we need to call generate function directly and need to convert embedding to tensor way * Addressing review comments. * Refactoring finder, and implementing rag_generator class. * Refined the implementation of RAGGenerator and now it is in clean shape * Renaming RAGGenerator to RAGenerator * Reverting change from finder.py and addressing review comments * Remove support for RagSequenceForGeneration * Utilizing embed_passage function from DensePassageRetriever * Adding sample test data to verify generator output * Updating testing script * Updating testing script * Fixing bug related to top_k * Updating latest farm dependency * Comment out farm dependency * Reverting changes from TransformersReader * Adding transformers dataset to compare transformers and haystack generator implementation * Using generator_encoder instead of question_encoder to generate context_input_ids * Adding workaround to install FARM dependency from master branch * Removing unnecessary changes * Fixing generator test * Removing transformers datasets * Fixing generator test * Some cleanup and updating TODO comments * Adding tutorial notebook * Updating tutorials with comments * Explicitly passing token model in RAG test * Addressing review comments * Fixing notebook * Refactoring tests to reduce memory footprint * Split generator tests in separate ci step and before running it reclaim memory by terminating containers * Moving tika dependent test to separate dir * Remove unwanted code * Brining reader under session scope * Farm is now session object hence restoring changes from default value * Updating assert for pdf converter * Dummy commit to trigger CI flow * REducing memory footprint required for generator tests * Fixing mypy issues * Marking test with tika and elasticsearch markers. Reverting changes in CI and pytest splits * reducing changes * Fixing CI * changing elastic search ci * Fixing test error * Disabling return of embedding * Marking generator test as well * Refactoring tutorials * Increasing ES memory to 750M * Trying another fix for ES CI * Reverting CI changes * Splitting tests in CI * Generator and non-generator markers split * Adding pytest.ini to add markers and enable strict-markers option * Reducing elastic search container memory * Simplifying generator test by using documents with embedding directly * Bump up farm to 0.5.0
2020-10-30 18:06:02 +01:00
retriever = EmbeddingRetriever(
document_store=document_store,
embedding_model="deepset/sentence_bert",
use_gpu=False
)
elif retriever_type == "retribert":
retriever = EmbeddingRetriever(document_store=document_store,
embedding_model="yjernite/retribert-base-uncased",
model_format="retribert",
use_gpu=False)
elif retriever_type == "elasticsearch":
retriever = ElasticsearchRetriever(document_store=document_store)
elif retriever_type == "es_filter_only":
retriever = ElasticsearchFilterOnlyRetriever(document_store=document_store)
else:
raise Exception(f"No retriever fixture for '{retriever_type}'")
return retriever
2020-12-14 18:15:44 +01:00
@pytest.fixture(params=["elasticsearch", "faiss", "memory", "sql", "milvus"])
2020-12-14 18:15:44 +01:00
def document_store_with_docs(request, test_docs_xs):
document_store = get_document_store(request.param)
document_store.write_documents(test_docs_xs)
yield document_store
document_store.delete_all_documents()
2020-12-14 18:15:44 +01:00
@pytest.fixture
2020-12-14 18:15:44 +01:00
def document_store(request, test_docs_xs):
vector_dim = request.node.get_closest_marker("vector_dim", pytest.mark.vector_dim(768))
document_store = get_document_store(request.param, vector_dim.args[0])
2020-12-14 18:15:44 +01:00
yield document_store
document_store.delete_all_documents()
2020-12-14 18:15:44 +01:00
def get_document_store(document_store_type, embedding_dim=768, embedding_field="embedding"):
2020-12-14 18:15:44 +01:00
if document_store_type == "sql":
document_store = SQLDocumentStore(url="sqlite://", index="haystack_test")
2020-12-14 18:15:44 +01:00
elif document_store_type == "memory":
document_store = InMemoryDocumentStore(
return_embedding=True, embedding_dim=embedding_dim, embedding_field=embedding_field, index="haystack_test"
)
2020-12-14 18:15:44 +01:00
elif document_store_type == "elasticsearch":
# make sure we start from a fresh index
client = Elasticsearch()
client.indices.delete(index='haystack_test*', ignore=[404])
document_store = ElasticsearchDocumentStore(
index="haystack_test", return_embedding=True, embedding_dim=embedding_dim, embedding_field=embedding_field
)
2020-12-14 18:15:44 +01:00
elif document_store_type == "faiss":
document_store = FAISSDocumentStore(
vector_dim=embedding_dim,
sql_url="sqlite://",
return_embedding=True,
embedding_field=embedding_field,
index="haystack_test",
2020-12-14 18:15:44 +01:00
)
return document_store
elif document_store_type == "milvus":
document_store = MilvusDocumentStore(
vector_dim=embedding_dim,
sql_url="sqlite://",
return_embedding=True,
embedding_field=embedding_field,
index="haystack_test",
)
_, collections = document_store.milvus_server.list_collections()
for collection in collections:
if collection.startswith("haystack_test"):
document_store.milvus_server.drop_collection(collection)
return document_store
elif document_store_type == "weaviate":
document_store = WeaviateDocumentStore(
weaviate_url="http://localhost:8080",
index="Haystacktest"
)
document_store.weaviate_client.schema.delete_all()
document_store._create_schema_and_index_if_not_exist()
return document_store
2020-12-14 18:15:44 +01:00
else:
raise Exception(f"No document store fixture for '{document_store_type}'")
return document_store