mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-08-28 18:36:36 +00:00
feat: add async PromptNode run (#5890)
* add async promptnode * Remove unecessary calls to dict.keys() --------- Co-authored-by: Silvano Cerza <silvanocerza@gmail.com> Co-authored-by: Silvano Cerza <3314350+silvanocerza@users.noreply.github.com>
This commit is contained in:
parent
578f2b4bbf
commit
0947f59545
@ -111,6 +111,16 @@ class PromptModel(BaseComponent):
|
|||||||
output = self.model_invocation_layer.invoke(prompt=prompt, **kwargs)
|
output = self.model_invocation_layer.invoke(prompt=prompt, **kwargs)
|
||||||
return output
|
return output
|
||||||
|
|
||||||
|
async def ainvoke(self, prompt: Union[str, List[str], List[Dict[str, str]]], **kwargs) -> List[str]:
|
||||||
|
"""
|
||||||
|
Drop-in replacement asyncio version of the `invoke` method, see there for documentation.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
return await self.model_invocation_layer.invoke(prompt=prompt, **kwargs)
|
||||||
|
except TypeError:
|
||||||
|
# The `invoke` method of the underlying invocation layer doesn't support asyncio
|
||||||
|
return self.model_invocation_layer.invoke(prompt=prompt, **kwargs)
|
||||||
|
|
||||||
@overload
|
@overload
|
||||||
def _ensure_token_limit(self, prompt: str) -> str:
|
def _ensure_token_limit(self, prompt: str) -> str:
|
||||||
...
|
...
|
||||||
|
@ -232,6 +232,37 @@ class PromptNode(BaseComponent):
|
|||||||
return list(template.prompt_params)
|
return list(template.prompt_params)
|
||||||
return []
|
return []
|
||||||
|
|
||||||
|
def _prepare( # type: ignore
|
||||||
|
self, query, file_paths, labels, documents, meta, invocation_context, prompt_template, generation_kwargs
|
||||||
|
) -> Dict:
|
||||||
|
"""
|
||||||
|
Prepare prompt invocation.
|
||||||
|
"""
|
||||||
|
invocation_context = invocation_context or {}
|
||||||
|
|
||||||
|
if query and "query" not in invocation_context:
|
||||||
|
invocation_context["query"] = query
|
||||||
|
|
||||||
|
if file_paths and "file_paths" not in invocation_context:
|
||||||
|
invocation_context["file_paths"] = file_paths
|
||||||
|
|
||||||
|
if labels and "labels" not in invocation_context:
|
||||||
|
invocation_context["labels"] = labels
|
||||||
|
|
||||||
|
if documents and "documents" not in invocation_context:
|
||||||
|
invocation_context["documents"] = documents
|
||||||
|
|
||||||
|
if meta and "meta" not in invocation_context:
|
||||||
|
invocation_context["meta"] = meta
|
||||||
|
|
||||||
|
if "prompt_template" not in invocation_context:
|
||||||
|
invocation_context["prompt_template"] = self.get_prompt_template(prompt_template)
|
||||||
|
|
||||||
|
if generation_kwargs:
|
||||||
|
invocation_context.update(generation_kwargs)
|
||||||
|
|
||||||
|
return invocation_context
|
||||||
|
|
||||||
def run(
|
def run(
|
||||||
self,
|
self,
|
||||||
query: Optional[str] = None,
|
query: Optional[str] = None,
|
||||||
@ -272,29 +303,86 @@ class PromptNode(BaseComponent):
|
|||||||
# so that they can be returned by `run()` as part of the pipeline's debug output.
|
# so that they can be returned by `run()` as part of the pipeline's debug output.
|
||||||
prompt_collector: List[str] = []
|
prompt_collector: List[str] = []
|
||||||
|
|
||||||
invocation_context = invocation_context or {}
|
invocation_context = self._prepare(
|
||||||
if query and "query" not in invocation_context.keys():
|
query, file_paths, labels, documents, meta, invocation_context, prompt_template, generation_kwargs
|
||||||
invocation_context["query"] = query
|
)
|
||||||
|
|
||||||
if file_paths and "file_paths" not in invocation_context.keys():
|
results = self(**invocation_context, prompt_collector=prompt_collector)
|
||||||
invocation_context["file_paths"] = file_paths
|
|
||||||
|
|
||||||
if labels and "labels" not in invocation_context.keys():
|
prompt_template_resolved: PromptTemplate = invocation_context.pop("prompt_template")
|
||||||
invocation_context["labels"] = labels
|
|
||||||
|
|
||||||
if documents and "documents" not in invocation_context.keys():
|
try:
|
||||||
invocation_context["documents"] = documents
|
output_variable = self.output_variable or prompt_template_resolved.output_variable or "results"
|
||||||
|
except:
|
||||||
|
output_variable = "results"
|
||||||
|
|
||||||
if meta and "meta" not in invocation_context.keys():
|
invocation_context[output_variable] = results
|
||||||
invocation_context["meta"] = meta
|
invocation_context["prompts"] = prompt_collector
|
||||||
|
final_result: Dict[str, Any] = {output_variable: results, "invocation_context": invocation_context}
|
||||||
|
|
||||||
if "prompt_template" not in invocation_context.keys():
|
if self.debug:
|
||||||
invocation_context["prompt_template"] = self.get_prompt_template(prompt_template)
|
final_result["_debug"] = {"prompts_used": prompt_collector}
|
||||||
|
|
||||||
if generation_kwargs:
|
return final_result, "output_1"
|
||||||
invocation_context.update(generation_kwargs)
|
|
||||||
|
|
||||||
results = self(prompt_collector=prompt_collector, **invocation_context)
|
async def _aprompt(self, prompt_template: Optional[Union[str, PromptTemplate]], *args, **kwargs):
|
||||||
|
"""
|
||||||
|
Async version of the actual prompt invocation.
|
||||||
|
"""
|
||||||
|
results = []
|
||||||
|
# we pop the prompt_collector kwarg to avoid passing it to the model
|
||||||
|
prompt_collector: List[Union[str, List[Dict[str, str]]]] = kwargs.pop("prompt_collector", [])
|
||||||
|
|
||||||
|
# kwargs override model kwargs
|
||||||
|
kwargs = {**self._prepare_model_kwargs(), **kwargs}
|
||||||
|
template_to_fill = self.get_prompt_template(prompt_template)
|
||||||
|
if template_to_fill:
|
||||||
|
# prompt template used, yield prompts from inputs args
|
||||||
|
for prompt in template_to_fill.fill(*args, **kwargs):
|
||||||
|
kwargs_copy = template_to_fill.remove_template_params(copy.copy(kwargs))
|
||||||
|
# and pass the prepared prompt and kwargs copy to the model
|
||||||
|
prompt = self.prompt_model._ensure_token_limit(prompt)
|
||||||
|
prompt_collector.append(prompt)
|
||||||
|
logger.debug("Prompt being sent to LLM with prompt %s and kwargs %s", prompt, kwargs_copy)
|
||||||
|
output = await self.prompt_model.ainvoke(prompt, **kwargs_copy)
|
||||||
|
results.extend(output)
|
||||||
|
|
||||||
|
kwargs["prompts"] = prompt_collector
|
||||||
|
results = template_to_fill.post_process(results, **kwargs)
|
||||||
|
else:
|
||||||
|
# straightforward prompt, no templates used
|
||||||
|
for prompt in list(args):
|
||||||
|
kwargs_copy = copy.copy(kwargs)
|
||||||
|
prompt = self.prompt_model._ensure_token_limit(prompt)
|
||||||
|
prompt_collector.append(prompt)
|
||||||
|
logger.debug("Prompt being sent to LLM with prompt %s and kwargs %s ", prompt, kwargs_copy)
|
||||||
|
output = await self.prompt_model.ainvoke(prompt, **kwargs_copy)
|
||||||
|
results.extend(output)
|
||||||
|
return results
|
||||||
|
|
||||||
|
async def arun(
|
||||||
|
self,
|
||||||
|
query: Optional[str] = None,
|
||||||
|
file_paths: Optional[List[str]] = None,
|
||||||
|
labels: Optional[MultiLabel] = None,
|
||||||
|
documents: Optional[List[Document]] = None,
|
||||||
|
meta: Optional[dict] = None,
|
||||||
|
invocation_context: Optional[Dict[str, Any]] = None,
|
||||||
|
prompt_template: Optional[Union[str, PromptTemplate]] = None,
|
||||||
|
generation_kwargs: Optional[Dict[str, Any]] = None,
|
||||||
|
) -> Tuple[Dict, str]:
|
||||||
|
"""
|
||||||
|
Drop-in replacement asyncio version of the `run` method, see there for documentation.
|
||||||
|
"""
|
||||||
|
prompt_collector: List[str] = []
|
||||||
|
|
||||||
|
invocation_context = self._prepare(
|
||||||
|
query, file_paths, labels, documents, meta, invocation_context, prompt_template, generation_kwargs
|
||||||
|
)
|
||||||
|
|
||||||
|
# Let's skip the call to __call__, because all it does is injecting a prompt template
|
||||||
|
# if there isn't any, while we know for sure it'll be in `invocation_context`.
|
||||||
|
results = await self._aprompt(prompt_collector=prompt_collector, **invocation_context)
|
||||||
|
|
||||||
prompt_template_resolved: PromptTemplate = invocation_context.pop("prompt_template")
|
prompt_template_resolved: PromptTemplate = invocation_context.pop("prompt_template")
|
||||||
|
|
||||||
|
@ -0,0 +1,4 @@
|
|||||||
|
---
|
||||||
|
enhancements:
|
||||||
|
- |
|
||||||
|
PromptNode can now be run asynchronously by calling the `arun` method.
|
@ -1,4 +1,5 @@
|
|||||||
from unittest.mock import patch, Mock
|
import asyncio
|
||||||
|
from unittest.mock import patch, MagicMock
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
@ -36,3 +37,24 @@ def test_construtor_with_custom_model():
|
|||||||
def test_constructor_with_no_supported_model():
|
def test_constructor_with_no_supported_model():
|
||||||
with pytest.raises(ValueError, match="Model some-random-model is not supported"):
|
with pytest.raises(ValueError, match="Model some-random-model is not supported"):
|
||||||
PromptModel("some-random-model")
|
PromptModel("some-random-model")
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_ainvoke():
|
||||||
|
def async_return(result):
|
||||||
|
f = asyncio.Future()
|
||||||
|
f.set_result(result)
|
||||||
|
return f
|
||||||
|
|
||||||
|
mock_layer = MagicMock() # no async-defined methods, await will fail and fall back to regular `invoke`
|
||||||
|
mock_layer.return_value.invoke.return_value = async_return("Async Bar!")
|
||||||
|
model = PromptModel(invocation_layer_class=mock_layer)
|
||||||
|
assert await model.ainvoke("Foo") == "Async Bar!"
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_ainvoke_falls_back_to_sync():
|
||||||
|
mock_layer = MagicMock() # no async-defined methods, await will fail and fall back to regular `invoke`
|
||||||
|
mock_layer.return_value.invoke.return_value = "Bar!"
|
||||||
|
model = PromptModel(invocation_layer_class=mock_layer)
|
||||||
|
assert await model.ainvoke("Foo") == "Bar!"
|
||||||
|
@ -1,18 +1,15 @@
|
|||||||
import os
|
import os
|
||||||
import logging
|
import logging
|
||||||
from typing import Optional, Union, List, Dict, Any, Tuple
|
from typing import Optional, Union, List, Dict, Any, Tuple
|
||||||
from unittest.mock import patch, Mock, MagicMock
|
from unittest.mock import patch, Mock, MagicMock, AsyncMock
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
from prompthub import Prompt
|
from prompthub import Prompt
|
||||||
from transformers import GenerationConfig, TextStreamer
|
|
||||||
|
|
||||||
from haystack import Document, Pipeline, BaseComponent, MultiLabel
|
from haystack import Document, Pipeline, BaseComponent, MultiLabel
|
||||||
from haystack.nodes.prompt import PromptTemplate, PromptNode, PromptModel
|
from haystack.nodes.prompt import PromptTemplate, PromptNode, PromptModel
|
||||||
from haystack.nodes.prompt.prompt_template import LEGACY_DEFAULT_TEMPLATES
|
from haystack.nodes.prompt.prompt_template import LEGACY_DEFAULT_TEMPLATES
|
||||||
from haystack.nodes.prompt.invocation_layer import (
|
from haystack.nodes.prompt.invocation_layer import (
|
||||||
HFLocalInvocationLayer,
|
|
||||||
DefaultTokenStreamingHandler,
|
|
||||||
AzureChatGPTInvocationLayer,
|
AzureChatGPTInvocationLayer,
|
||||||
AzureOpenAIInvocationLayer,
|
AzureOpenAIInvocationLayer,
|
||||||
OpenAIInvocationLayer,
|
OpenAIInvocationLayer,
|
||||||
@ -1098,3 +1095,83 @@ def test_prompt_node_warns_about_missing_documents(mock_model, caplog):
|
|||||||
"Expected prompt parameter 'documents' to be provided but it is missing. "
|
"Expected prompt parameter 'documents' to be provided but it is missing. "
|
||||||
"Continuing with an empty list of documents." in caplog.text
|
"Continuing with an empty list of documents." in caplog.text
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.unit
|
||||||
|
@patch("haystack.nodes.prompt.prompt_node.PromptModel")
|
||||||
|
def test__prepare_invocation_context_is_empty(mock_model):
|
||||||
|
node = PromptNode()
|
||||||
|
node.get_prompt_template = MagicMock(return_value="Test Template")
|
||||||
|
|
||||||
|
kwargs = {
|
||||||
|
"query": "query",
|
||||||
|
"file_paths": ["foo", "bar"],
|
||||||
|
"labels": ["label", "another"],
|
||||||
|
"documents": ["A", "B"],
|
||||||
|
"meta": {"meta_key": "meta_value"},
|
||||||
|
"prompt_template": "my-test-prompt",
|
||||||
|
"invocation_context": None,
|
||||||
|
"generation_kwargs": {"gen_key": "gen_value"},
|
||||||
|
}
|
||||||
|
|
||||||
|
invocation_context = node._prepare(**kwargs)
|
||||||
|
|
||||||
|
node.get_prompt_template.assert_called_once_with("my-test-prompt")
|
||||||
|
assert invocation_context == {
|
||||||
|
"query": "query",
|
||||||
|
"file_paths": ["foo", "bar"],
|
||||||
|
"labels": ["label", "another"],
|
||||||
|
"documents": ["A", "B"],
|
||||||
|
"meta": {"meta_key": "meta_value"},
|
||||||
|
"prompt_template": "Test Template",
|
||||||
|
"gen_key": "gen_value",
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.unit
|
||||||
|
@patch("haystack.nodes.prompt.prompt_node.PromptModel")
|
||||||
|
def test__prepare_invocation_context_was_passed(mock_model):
|
||||||
|
node = PromptNode()
|
||||||
|
|
||||||
|
# Test invocation_context is left untouched
|
||||||
|
invocation_context = {
|
||||||
|
"query": "query",
|
||||||
|
"file_paths": ["foo", "bar"],
|
||||||
|
"labels": ["label", "another"],
|
||||||
|
"documents": ["A", "B"],
|
||||||
|
"meta": {"meta_key": "meta_value"},
|
||||||
|
"prompt_template": "my-test-prompt",
|
||||||
|
"invocation_context": None,
|
||||||
|
}
|
||||||
|
kwargs = {
|
||||||
|
"query": None,
|
||||||
|
"file_paths": None,
|
||||||
|
"labels": None,
|
||||||
|
"documents": None,
|
||||||
|
"meta": None,
|
||||||
|
"prompt_template": None,
|
||||||
|
"invocation_context": invocation_context,
|
||||||
|
"generation_kwargs": None,
|
||||||
|
}
|
||||||
|
|
||||||
|
assert node._prepare(**kwargs) == invocation_context
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.unit
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
@patch("haystack.nodes.prompt.prompt_node.PromptModel")
|
||||||
|
async def test_arun(mock_model):
|
||||||
|
node = PromptNode()
|
||||||
|
node._aprompt = AsyncMock()
|
||||||
|
await node.arun("a query")
|
||||||
|
node._aprompt.assert_awaited_once_with(prompt_collector=[], query="a query", prompt_template=None)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.unit
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
@patch("haystack.nodes.prompt.prompt_node.PromptModel")
|
||||||
|
async def test_aprompt(mock_model):
|
||||||
|
node = PromptNode()
|
||||||
|
mock_model.return_value.ainvoke = AsyncMock()
|
||||||
|
await node._aprompt(PromptTemplate("test template"))
|
||||||
|
mock_model.return_value.ainvoke.assert_awaited_once()
|
||||||
|
Loading…
x
Reference in New Issue
Block a user