refactor!: LocalWhisperTranscriber - new devices mgmt (#7008)

* wip

* whisper local transcriber: use new device mgmt

* better from_dict + test

* reno
This commit is contained in:
Stefano Fiorucci 2024-02-16 11:25:53 +01:00 committed by GitHub
parent a7209f6413
commit 0aa788facc
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 68 additions and 16 deletions

View File

@ -4,15 +4,12 @@ import logging
import tempfile
from pathlib import Path
from haystack import component, Document, default_to_dict, ComponentError
from haystack import component, Document, default_to_dict, ComponentError, default_from_dict
from haystack.dataclasses import ByteStream
from haystack.lazy_imports import LazyImport
from haystack.utils import ComponentDevice
with LazyImport(
"Run 'pip install transformers[torch]' to install torch and "
"'pip install \"openai-whisper>=20231106\"' to install whisper."
) as whisper_import:
import torch
with LazyImport("Run 'pip install \"openai-whisper>=20231106\"' to install whisper.") as whisper_import:
import whisper
@ -33,14 +30,14 @@ class LocalWhisperTranscriber:
def __init__(
self,
model: WhisperLocalModel = "large",
device: Optional[str] = None,
device: Optional[ComponentDevice] = None,
whisper_params: Optional[Dict[str, Any]] = None,
):
"""
:param model: Name of the model to use. Set it to one of the following values:
:type model: Literal["tiny", "small", "medium", "large", "large-v2"]
:param device: Name of the torch device to use for inference. If None, CPU is used.
:type device: Optional[str]
:param device: The device on which the model is loaded. If `None`, the default device is automatically
selected.
"""
whisper_import.check()
if model not in get_args(WhisperLocalModel):
@ -49,7 +46,7 @@ class LocalWhisperTranscriber:
)
self.model = model
self.whisper_params = whisper_params or {}
self.device = torch.device(device) if device else torch.device("cpu")
self.device = ComponentDevice.resolve_device(device)
self._model = None
def warm_up(self) -> None:
@ -57,13 +54,23 @@ class LocalWhisperTranscriber:
Loads the model.
"""
if not self._model:
self._model = whisper.load_model(self.model, device=self.device)
self._model = whisper.load_model(self.model, device=self.device.to_torch())
def to_dict(self) -> Dict[str, Any]:
"""
Serialize this component to a dictionary.
"""
return default_to_dict(self, model=self.model, device=str(self.device), whisper_params=self.whisper_params)
return default_to_dict(self, model=self.model, device=self.device.to_dict(), whisper_params=self.whisper_params)
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "LocalWhisperTranscriber":
"""
Create a `LocalWhisperTranscriber` instance from a dictionary.
"""
serialized_device = data["init_parameters"]["device"]
data["init_parameters"]["device"] = ComponentDevice.from_dict(serialized_device)
return default_from_dict(cls, data)
@component.output_types(documents=List[Document])
def run(self, sources: List[Union[str, Path, ByteStream]], whisper_params: Optional[Dict[str, Any]] = None):

View File

@ -0,0 +1,23 @@
---
upgrade:
- |
Adopt the new framework-agnostic device management in Local Whisper Transcriber.
Before this change:
```python
from haystack.components.audio import LocalWhisperTranscriber
transcriber = LocalWhisperTranscriber(device="cuda:0")
```
After this change:
```python
from haystack.utils.device import ComponentDevice, Device
from haystack.components.audio import LocalWhisperTranscriber
device = ComponentDevice.from_single(Device.gpu(id=0))
# or
# device = ComponentDevice.from_str("cuda:0")
transcriber = LocalWhisperTranscriber(device=device)
```

View File

@ -7,6 +7,7 @@ import torch
from haystack.dataclasses import Document, ByteStream
from haystack.components.audio import LocalWhisperTranscriber
from haystack.utils.device import ComponentDevice, Device
SAMPLES_PATH = Path(__file__).parent.parent.parent / "test_files"
@ -18,7 +19,7 @@ class TestLocalWhisperTranscriber:
model="large-v2"
) # Doesn't matter if it's huge, the model is not loaded in init.
assert transcriber.model == "large-v2"
assert transcriber.device == torch.device("cpu")
assert transcriber.device == ComponentDevice.resolve_device(None)
assert transcriber._model is None
def test_init_wrong_model(self):
@ -30,23 +31,44 @@ class TestLocalWhisperTranscriber:
data = transcriber.to_dict()
assert data == {
"type": "haystack.components.audio.whisper_local.LocalWhisperTranscriber",
"init_parameters": {"model": "large", "device": "cpu", "whisper_params": {}},
"init_parameters": {
"model": "large",
"device": ComponentDevice.resolve_device(None).to_dict(),
"whisper_params": {},
},
}
def test_to_dict_with_custom_init_parameters(self):
transcriber = LocalWhisperTranscriber(
model="tiny", device="cuda", whisper_params={"return_segments": True, "temperature": [0.1, 0.6, 0.8]}
model="tiny",
device=ComponentDevice.from_str("cuda:0"),
whisper_params={"return_segments": True, "temperature": [0.1, 0.6, 0.8]},
)
data = transcriber.to_dict()
assert data == {
"type": "haystack.components.audio.whisper_local.LocalWhisperTranscriber",
"init_parameters": {
"model": "tiny",
"device": "cuda",
"device": ComponentDevice.from_str("cuda:0").to_dict(),
"whisper_params": {"return_segments": True, "temperature": [0.1, 0.6, 0.8]},
},
}
def test_from_dict(self):
data = {
"type": "haystack.components.audio.whisper_local.LocalWhisperTranscriber",
"init_parameters": {
"model": "tiny",
"device": ComponentDevice.from_single(Device.cpu()).to_dict(),
"whisper_params": {},
},
}
transcriber = LocalWhisperTranscriber.from_dict(data)
assert transcriber.model == "tiny"
assert transcriber.device == ComponentDevice.from_single(Device.cpu())
assert transcriber.whisper_params == {}
assert transcriber._model is None
def test_warmup(self):
with patch("haystack.components.audio.whisper_local.whisper") as mocked_whisper:
transcriber = LocalWhisperTranscriber(model="large-v2")