mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-11-18 19:13:50 +00:00
Fix typo
This commit is contained in:
parent
ef9b99c3cc
commit
0f5b61d20a
@ -46,7 +46,7 @@ class Finder:
|
|||||||
# 3) Apply reader to get granular answer(s)
|
# 3) Apply reader to get granular answer(s)
|
||||||
logger.info(f"Applying the reader now to look for the answer in detail ...")
|
logger.info(f"Applying the reader now to look for the answer in detail ...")
|
||||||
results = self.reader.predict(question=question,
|
results = self.reader.predict(question=question,
|
||||||
paragrahps=paragraphs,
|
paragraphs=paragraphs,
|
||||||
meta_data_paragraphs=meta_data,
|
meta_data_paragraphs=meta_data,
|
||||||
top_k=top_k_reader)
|
top_k=top_k_reader)
|
||||||
|
|
||||||
|
|||||||
@ -145,7 +145,7 @@ class FARMReader:
|
|||||||
self.inferencer.model.save(directory)
|
self.inferencer.model.save(directory)
|
||||||
self.inferencer.processor.save(directory)
|
self.inferencer.processor.save(directory)
|
||||||
|
|
||||||
def predict(self, question, paragrahps, meta_data_paragraphs=None, top_k=None, max_processes=1):
|
def predict(self, question, paragraphs, meta_data_paragraphs=None, top_k=None, max_processes=1):
|
||||||
"""
|
"""
|
||||||
Use loaded QA model to find answers for a question in the supplied paragraphs.
|
Use loaded QA model to find answers for a question in the supplied paragraphs.
|
||||||
|
|
||||||
@ -175,12 +175,12 @@ class FARMReader:
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
if meta_data_paragraphs is None:
|
if meta_data_paragraphs is None:
|
||||||
meta_data_paragraphs = len(paragrahps) * [None]
|
meta_data_paragraphs = len(paragraphs) * [None]
|
||||||
assert len(paragrahps) == len(meta_data_paragraphs)
|
assert len(paragraphs) == len(meta_data_paragraphs)
|
||||||
|
|
||||||
# convert input to FARM format
|
# convert input to FARM format
|
||||||
input_dicts = []
|
input_dicts = []
|
||||||
for paragraph, meta_data in zip(paragrahps, meta_data_paragraphs):
|
for paragraph, meta_data in zip(paragraphs, meta_data_paragraphs):
|
||||||
cur = {"text": paragraph,
|
cur = {"text": paragraph,
|
||||||
"questions": [question],
|
"questions": [question],
|
||||||
"document_id": meta_data["document_id"]
|
"document_id": meta_data["document_id"]
|
||||||
@ -202,6 +202,8 @@ class FARMReader:
|
|||||||
positive_found = False
|
positive_found = False
|
||||||
for a in pred["predictions"][0]["answers"]:
|
for a in pred["predictions"][0]["answers"]:
|
||||||
# skip "no answers" here
|
# skip "no answers" here
|
||||||
|
# For now we only take one prediction from each passage
|
||||||
|
# TODO use more predictions per passage when setting n_candidates_per_passage + make FARM predictions more varied
|
||||||
if(not positive_found and a["answer"]):
|
if(not positive_found and a["answer"]):
|
||||||
cur = {"answer": a["answer"],
|
cur = {"answer": a["answer"],
|
||||||
"score": a["score"],
|
"score": a["score"],
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user