mirror of
				https://github.com/deepset-ai/haystack.git
				synced 2025-10-31 01:39:45 +00:00 
			
		
		
		
	Update README.rst
This commit is contained in:
		
							parent
							
								
									71e15a5a11
								
							
						
					
					
						commit
						1000cd9987
					
				| @ -135,6 +135,7 @@ The default :code:`ElasticsearchRetriever` uses Elasticsearch's native scoring ( | |||||||
| 
 | 
 | ||||||
| Example:: | Example:: | ||||||
| 
 | 
 | ||||||
|  | .. code-block:: python | ||||||
|     retriever = ElasticsearchRetriever(document_store=document_store, custom_query=None) |     retriever = ElasticsearchRetriever(document_store=document_store, custom_query=None) | ||||||
|     retriever.retrieve(query="Why did the revenue increase?", filters={"years": ["2019"], "company": ["Q1", "Q2"]}) |     retriever.retrieve(query="Why did the revenue increase?", filters={"years": ["2019"], "company": ["Q1", "Q2"]}) | ||||||
|     # returns: [Document, Document] |     # returns: [Document, Document] | ||||||
| @ -146,6 +147,7 @@ This retriever allows you to transform your query into an embedding using a mode | |||||||
| 
 | 
 | ||||||
| Example:: | Example:: | ||||||
| 
 | 
 | ||||||
|  | .. code-block:: python | ||||||
|     retriever = EmbeddingRetriever(document_store=document_store, |     retriever = EmbeddingRetriever(document_store=document_store, | ||||||
|                                    embedding_model="deepset/sentence-bert", |                                    embedding_model="deepset/sentence-bert", | ||||||
|                                    model_format="farm") |                                    model_format="farm") | ||||||
| @ -168,6 +170,7 @@ FARMReader | |||||||
| Implementing various QA models via the `FARM <https://github.com/deepset-ai/FARM>`_ Framework. | Implementing various QA models via the `FARM <https://github.com/deepset-ai/FARM>`_ Framework. | ||||||
| Example:: | Example:: | ||||||
| 
 | 
 | ||||||
|  | .. code-block:: python | ||||||
|     reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", |     reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", | ||||||
|                     use_gpu=False, no_ans_boost=-10, context_window_size=500, |                     use_gpu=False, no_ans_boost=-10, context_window_size=500, | ||||||
|                     top_k_per_candidate=3, top_k_per_sample=1, |                     top_k_per_candidate=3, top_k_per_sample=1, | ||||||
| @ -193,6 +196,7 @@ Implementing various QA models via the :code:`pipeline` class of `Transformers < | |||||||
| 
 | 
 | ||||||
| Example:: | Example:: | ||||||
| 
 | 
 | ||||||
|  | .. code-block:: python | ||||||
|     reader = TransformersReader(model="distilbert-base-uncased-distilled-squad", |     reader = TransformersReader(model="distilbert-base-uncased-distilled-squad", | ||||||
|                                 tokenizer="distilbert-base-uncased", |                                 tokenizer="distilbert-base-uncased", | ||||||
|                                 context_window_size=500, |                                 context_window_size=500, | ||||||
| @ -235,4 +239,4 @@ Haystack has a customizable PDF text extraction pipeline with cleaning functions | |||||||
| 
 | 
 | ||||||
| 8. Development | 8. Development | ||||||
| ------------------- | ------------------- | ||||||
| * Unit tests can be executed by running :code:`tox`. | * Unit tests can be executed by running :code:`tox`. | ||||||
|  | |||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user
	 Tanay Soni
						Tanay Soni