Add latest benchmark run (#652)

* add latest benchmark run

* update templates and fix small json errors

* Change scale

Co-authored-by: brandenchan <brandenchan@icloud.com>
This commit is contained in:
Malte Pietsch 2020-12-10 16:25:51 +01:00 committed by GitHub
parent efc754b166
commit 149d98a0fd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 245 additions and 190 deletions

View File

@ -10,10 +10,35 @@
"Speed (passages/sec)"
],
"data": [
{"F1": 80.67985794671885, "Model": "RoBERTa", "Speed": 92.3039712094936},
{"F1": 78.23306265318686, "Model": "MiniLM", "Speed": 98.62387044489223},
{"F1": 74.90271600053505, "Model": "BERT base", "Speed": 99.92750782409666},
{"F1": 82.64545708097472, "Model": "BERT large", "Speed": 39.529824033964466},
{"F1": 85.26275190954586, "Model": "XLM-RoBERTa", "Speed": 39.29142006004379}
{
"F1": 82.62983412843887,
"Speed": 98.86638639776464,
"Model": "RoBERTa"
},
{
"F1": 78.90026641413856,
"Speed": 181.96379531485616,
"Model": "MiniLM"
},
{
"F1": 74.32668866064459,
"Speed": 106.04748306200683,
"Model": "BERT base"
},
{
"F1": 83.29492827667042,
"Speed": 40.408497243719076,
"Model": "BERT large"
},
{
"F1": 84.62174414643722,
"Speed": 40.483264542292716,
"Model": "XLM-RoBERTa"
},
{
"F1": 42.342513261953935,
"Speed": 160.41712955027901,
"Model": "DistilBERT"
}
]
}

View File

@ -1,77 +1,101 @@
{
"chart_type": "LineChart",
"title": "Retriever Accuracy",
"subtitle": "mAP at different number of docs",
"description": "Here you can see how the mean avg. precision (mAP) of the retriever decays as the number of documents increases. The set up is the same as the above querying benchmark except that a varying number of negative documents are used to fill the document store.",
"columns": [
"n_docs",
"BM25 / ElasticSearch",
"DPR / ElasticSearch or FAISS (flat)",
"DPR / FAISS (HSNW)"
],
"axis": [
{ "x": "Number of docs", "y": "mAP" }
],
"data": [
{
"model": "DPR / ElasticSearch or FAISS (flat)",
"n_docs": 1000,
"map": 0.929
},
{
"model": "DPR / ElasticSearch or FAISS (flat)",
"n_docs": 10000,
"map": 0.898
},
{
"model": "DPR / ElasticSearch or FAISS (flat)",
"n_docs": 100000,
"map": 0.863
},
{
"model": "DPR / ElasticSearch or FAISS (flat)",
"n_docs": 500000,
"map": 0.805
},
{
"model": "BM25 / ElasticSearch",
"n_docs": 1000,
"map": 0.748
},
{
"model": "BM25 / ElasticSearch",
"n_docs": 10000,
"map": 0.6609999999999999
},
{
"model": "BM25 / ElasticSearch",
"n_docs": 100000,
"map": 0.56
},
{
"model": "BM25 / ElasticSearch",
"n_docs": 500000,
"map": 0.452
},
{
"model": "DPR / FAISS (HSNW)",
"n_docs": 1000,
"map": 0.929
},
{
"model": "DPR / FAISS (HSNW)",
"n_docs": 10000,
"map": 0.8959999999999999
},
{
"model": "DPR / FAISS (HSNW)",
"n_docs": 100000,
"map": 0.8490000000000001
},
{
"model": "DPR / FAISS (HSNW)",
"n_docs": 500000,
"map": 0.7659999999999999
}
]
"chart_type": "LineChart",
"title": "Retriever Accuracy",
"subtitle": "mAP at different number of docs",
"description": "Here you can see how the mean avg. precision (mAP) of the retriever decays as the number of documents increases. The set up is the same as the above querying benchmark except that a varying number of negative documents are used to fill the document store.",
"columns": [
"n_docs",
"BM25 / ElasticSearch",
"DPR / ElasticSearch",
"DPR / FAISS (flat)",
"DPR / FAISS (HSNW)"
],
"axis": [
{
"x": "Number of docs",
"y": "mAP"
}
],
"data": [
{
"model": "DPR / ElasticSearch",
"n_docs": 1000,
"map": 0.929
},
{
"model": "DPR / ElasticSearch",
"n_docs": 10000,
"map": 0.881
},
{
"model": "DPR / ElasticSearch",
"n_docs": 100000,
"map": 0.821
},
{
"model": "DPR / ElasticSearch",
"n_docs": 500000,
"map": 0.730
},
{
"model": "DPR / FAISS (flat)",
"n_docs": 1000,
"map": 0.929
},
{
"model": "DPR / FAISS (flat)",
"n_docs": 10000,
"map": 0.898
},
{
"model": "DPR / FAISS (flat)",
"n_docs": 100000,
"map": 0.863
},
{
"model": "DPR / FAISS (flat)",
"n_docs": 500000,
"map": 0.805
},
{
"model": "BM25 / ElasticSearch",
"n_docs": 1000,
"map": 0.748
},
{
"model": "BM25 / ElasticSearch",
"n_docs": 10000,
"map": 0.6609999999999999
},
{
"model": "BM25 / ElasticSearch",
"n_docs": 100000,
"map": 0.56
},
{
"model": "BM25 / ElasticSearch",
"n_docs": 500000,
"map": 0.452
},
{
"model": "DPR / FAISS (HSNW)",
"n_docs": 1000,
"map": 0.929
},
{
"model": "DPR / FAISS (HSNW)",
"n_docs": 10000,
"map": 0.896
},
{
"model": "DPR / FAISS (HSNW)",
"n_docs": 100000,
"map": 0.849
},
{
"model": "DPR / FAISS (HSNW)",
"n_docs": 500000,
"map": 0.766
}
]
}

View File

@ -1,54 +1,53 @@
{
"chart_type": "BarChart",
"title": "Retriever Performance",
"subtitle": "Time and Accuracy Benchmarks",
"description": "Comparison of the speed and accuracy of different DocumentStore / Retriever combinations on 100k documents. <b>Indexing speed</b> (in docs/sec) refers to how quickly Documents can be inserted into a DocumentStore. <b>Querying speed</b> (in queries/sec) refers to the speed at which the system returns relevant Documents when presented with a query.\n\nThe dataset used is Wikipedia, split into 100 word passages (from <a href='https://github.com/facebookresearch/DPR/blob/master/data/download_data.py'>here</a>)). \n\nFor querying, we use the Natural Questions development set in combination with the wiki passages. The Document Store is populated with the 100 word passages in which the answer spans occur (i.e. gold passages) as well as a random selection of 100 word passages in which the answer spans do not occur (i.e. negative passages). We take a total of 100k gold and negative passages. Query and document embedding are generated by the <i>\"facebook/dpr-question_encoder-single-nq-base\"</i> and <i>\"facebook/dpr-ctx_encoder-single-nq-base\"</i> models. The retriever returns 10 candidates and both the recall and mAP scores are calculated on these 10.\n\nFor FAISS HNSW, we use <i>n_links=128</i>, <i>efSearch=20</i> and <i>efConstruction=80</i>. Both index and query benchmarks are performed on an AWS P3.2xlarge instance which is accelerated by an Nvidia V100 GPU.",
"bars": "horizontal",
"columns": [
"Model",
"mAP",
"Index Speed (docs/sec)",
"Query Speed (queries/sec)"
],
"series": {
"s0": "map",
"s1": "time",
"s2": "time"
},
"axes": {
"label": "map",
"time_side": "top",
"time_label": "seconds"
},
"data": [
{
"model": "DPR / ElasticSearch",
"n_docs": 100000,
"index_speed": 79.54165185,
"query_speed": 6.5360000000000005,
"map": 86.3
"chart_type": "BarChart",
"title": "Retriever Performance",
"subtitle": "Time and Accuracy Benchmarks",
"description": "Comparison of the speed and accuracy of different DocumentStore / Retriever combinations on 100k documents. <b>Indexing speed</b> (in docs/sec) refers to how quickly Documents can be inserted into a DocumentStore. <b>Querying speed</b> (in queries/sec) refers to the speed at which the system returns relevant Documents when presented with a query.\n\nThe dataset used is Wikipedia, split into 100 word passages (from <a href='https://github.com/facebookresearch/DPR/blob/master/data/download_data.py'>here</a>)). \n\nFor querying, we use the Natural Questions development set in combination with the wiki passages. The Document Store is populated with the 100 word passages in which the answer spans occur (i.e. gold passages) as well as a random selection of 100 word passages in which the answer spans do not occur (i.e. negative passages). We take a total of 100k gold and negative passages. Query and document embedding are generated by the <i>\"facebook/dpr-question_encoder-single-nq-base\"</i> and <i>\"facebook/dpr-ctx_encoder-single-nq-base\"</i> models. The retriever returns 10 candidates and both the recall and mAP scores are calculated on these 10.\n\nFor FAISS HNSW, we use <i>n_links=128</i>, <i>efSearch=20</i> and <i>efConstruction=80</i>. Both index and query benchmarks are performed on an AWS P3.2xlarge instance which is accelerated by an Nvidia V100 GPU.",
"bars": "horizontal",
"columns": [
"Model",
"mAP",
"Index Speed (docs/sec)",
"Query Speed (queries/sec)"
],
"series": {
"s0": "map",
"s1": "time",
"s2": "time"
},
{
"model": "DPR / FAISS (flat)",
"n_docs": 100000,
"index_speed": 107.8662479,
"query_speed": 5.044,
"map": 86.3
"axes": {
"label": "map",
"time_side": "top",
"time_label": "seconds"
},
{
"model": "BM25 / ElasticSearch",
"n_docs": 100000,
"index_speed": 476.9143596,
"query_speed": 162.996,
"map": 56.0
},
{
"model": "DPR / FAISS (HSNW)",
"n_docs": 100000,
"index_speed": 92.24548333,
"query_speed": 12.815,
"map": 84.9
}
]
}
"data": [
{
"model": "DPR / ElasticSearch",
"n_docs": 100000,
"index_speed": 73.93635160290218,
"query_speed": 6.23,
"map": 82
},
{
"model": "DPR / FAISS (flat)",
"n_docs": 100000,
"index_speed": 104.77116699738369,
"query_speed": 4.89,
"map": 86.3
},
{
"model": "BM25 / ElasticSearch",
"n_docs": 100000,
"index_speed": 484.32931514144724,
"query_speed": 162.59,
"map": 56
},
{
"model": "DPR / FAISS (HSNW)",
"n_docs": 100000,
"index_speed": 91.41086878008392,
"query_speed": 12.85,
"map": 84.9
}
]
}

View File

@ -5,16 +5,18 @@
"description": "Here you can see how the query speed of different Retriever / DocumentStore combinations scale as the number of documents increases. The set up is the same as the above querying benchmark except that a varying number of negative documents are used to fill the document store.",
"columns": [
"n_docs",
"BM25 / ElasticSearch",
"BM25 / ElasticSearch",
"DPR / ElasticSearch",
"DPR / FAISS (flat)",
"DPR / FAISS (HSNW)"
],
"axis": [
{ "x": "Number of docs", "y": "Queries/sec" }
],
"data":
[
"axis": [
{
"x": "Number of docs",
"y": "Queries/sec"
}
],
"data": [
{
"model": "DPR / ElasticSearch",
"n_docs": 1000,
@ -23,17 +25,17 @@
{
"model": "DPR / ElasticSearch",
"n_docs": 10000,
"query_speed": 27.006999999999998
"query_speed": 24.8
},
{
"model": "DPR / ElasticSearch",
"n_docs": 100000,
"query_speed": 6.5360000000000005
"query_speed": 6.23
},
{
"model": "DPR / ElasticSearch",
"n_docs": 500000,
"query_speed": 1.514
"query_speed": 1.45
},
{
"model": "DPR / FAISS (flat)",
@ -43,17 +45,17 @@
{
"model": "DPR / FAISS (flat)",
"n_docs": 10000,
"query_speed": 23.976999999999997
"query_speed": 22.47
},
{
"model": "DPR / FAISS (flat)",
"n_docs": 100000,
"query_speed": 5.044
"query_speed": 4.90
},
{
"model": "DPR / FAISS (flat)",
"n_docs": 500000,
"query_speed": 1.091
"query_speed": 1.08
},
{
"model": "BM25 / ElasticSearch",
@ -63,17 +65,17 @@
{
"model": "BM25 / ElasticSearch",
"n_docs": 10000,
"query_speed": 167.81
"query_speed": 248.97
},
{
"model": "BM25 / ElasticSearch",
"n_docs": 100000,
"query_speed": 162.996
"query_speed": 162.59
},
{
"model": "BM25 / ElasticSearch",
"n_docs": 500000,
"query_speed": 95.491
"query_speed": 91.39
},
{
"model": "DPR / FAISS (HSNW)",
@ -83,17 +85,17 @@
{
"model": "DPR / FAISS (HSNW)",
"n_docs": 10000,
"query_speed": 33.421
"query_speed": 31.34
},
{
"model": "DPR / FAISS (HSNW)",
"n_docs": 100000,
"query_speed": 12.815
"query_speed": 12.85
},
{
"model": "DPR / FAISS (HSNW)",
"n_docs": 500000,
"query_speed": 3.259
"query_speed": 3.32
}
]
}

View File

@ -1,6 +1,7 @@
,EM,f1,top_n_accuracy,top_n,reader_time,seconds_per_query,passages_per_second,reader,error
0,0.7589752233271532,0.8067985794671885,0.9671329849991572,5,133.79706027999998,0.011275666634080564,92.30397120949361,deepset/roberta-base-squad2,
1,0.7359683128265633,0.7823306265318686,0.9714309792684982,5,125.22323393199997,0.010553112584864317,98.62387044489225,deepset/minilm-uncased-squad2,
2,0.700825889094893,0.7490271600053505,0.9585369964604753,5,123.58959278499992,0.010415438461570867,99.92750782409666,deepset/bert-base-cased-squad2,
3,0.7821506826226192,0.8264545708097472,0.9762346199224675,5,312.42233685099995,0.026329204184308102,39.529824033964466,deepset/bert-large-uncased-whole-word-masking-squad2,
4,0.8099612337771785,0.8526275190954586,0.9772459126917242,5,314.3179854819998,0.026488958830439897,39.29142006004379,deepset/xlm-roberta-large-squad2,
0,0.7836676217765043,0.8262983412843887,0.9742963087813922,5,124.91606550999859,0.01052722615118815,98.86638639776463,deepset/roberta-base-squad2,
1,0.7439743805831789,0.7890026641413856,0.9720209000505646,5,67.87064415001078,0.005719757639475036,181.96379531485616,deepset/minilm-uncased-squad2,
2,0.6947581324793528,0.7432668866064459,0.9557559413450194,5,116.45726653200109,0.009814365964267747,106.04748306200683,deepset/bert-base-cased-squad2,
3,0.7900724759817968,0.8329492827667042,0.976908815101972,5,305.62878707199707,0.02575668187021718,40.40849724371908,deepset/bert-large-uncased-whole-word-masking-squad2,
4,0.803472105174448,0.846217441464372,0.9742120343839542,5,305.06433064700104,0.025709112645120602,40.48326454229272,deepset/xlm-roberta-large-squad2,
5,0.3730827574582842,0.42342513261953935,0.9539019046013821,5,76.98679084099422,0.006488015408814615,160.417129550279,distilbert-base-uncased-distilled-squad,

1 EM f1 top_n_accuracy top_n reader_time seconds_per_query passages_per_second reader error
2 0 0.7589752233271532 0.7836676217765043 0.8067985794671885 0.8262983412843887 0.9671329849991572 0.9742963087813922 5 133.79706027999998 124.91606550999859 0.011275666634080564 0.01052722615118815 92.30397120949361 98.86638639776463 deepset/roberta-base-squad2
3 1 0.7359683128265633 0.7439743805831789 0.7823306265318686 0.7890026641413856 0.9714309792684982 0.9720209000505646 5 125.22323393199997 67.87064415001078 0.010553112584864317 0.005719757639475036 98.62387044489225 181.96379531485616 deepset/minilm-uncased-squad2
4 2 0.700825889094893 0.6947581324793528 0.7490271600053505 0.7432668866064459 0.9585369964604753 0.9557559413450194 5 123.58959278499992 116.45726653200109 0.010415438461570867 0.009814365964267747 99.92750782409666 106.04748306200683 deepset/bert-base-cased-squad2
5 3 0.7821506826226192 0.7900724759817968 0.8264545708097472 0.8329492827667042 0.9762346199224675 0.976908815101972 5 312.42233685099995 305.62878707199707 0.026329204184308102 0.02575668187021718 39.529824033964466 40.40849724371908 deepset/bert-large-uncased-whole-word-masking-squad2
6 4 0.8099612337771785 0.803472105174448 0.8526275190954586 0.846217441464372 0.9772459126917242 0.9742120343839542 5 314.3179854819998 305.06433064700104 0.026488958830439897 0.025709112645120602 39.29142006004379 40.48326454229272 deepset/xlm-roberta-large-squad2
7 5 0.3730827574582842 0.42342513261953935 0.9539019046013821 5 76.98679084099422 0.006488015408814615 160.417129550279 distilbert-base-uncased-distilled-squad

View File

@ -167,8 +167,12 @@ def benchmark_querying(n_docs_options,
"error": None
}
doc_store.delete_all_documents(index=doc_index)
doc_store.delete_all_documents(index=label_index)
logger.info("Deleting all docs from this run ...")
if isinstance(doc_store, FAISSDocumentStore):
doc_store.session.close()
else:
doc_store.delete_all_documents(index=doc_index)
doc_store.delete_all_documents(index=label_index)
time.sleep(5)
del doc_store
del retriever
@ -190,8 +194,12 @@ def benchmark_querying(n_docs_options,
"date_time": datetime.datetime.now(),
"error": str(tb)
}
doc_store.delete_all_documents(index=doc_index)
doc_store.delete_all_documents(index=label_index)
logger.info("Deleting all docs from this run ...")
if isinstance(doc_store, FAISSDocumentStore):
doc_store.session.close()
else:
doc_store.delete_all_documents(index=doc_index)
doc_store.delete_all_documents(index=label_index)
time.sleep(5)
del doc_store
del retriever

View File

@ -1,13 +1,13 @@
retriever,doc_store,n_docs,indexing_time,docs_per_second,date_time,Notes
dpr,elasticsearch,1000,14.16526405,70.59522482,2020-10-08 10:30:56,
elastic,elasticsearch,1000,5.805040058,172.2640998,2020-10-08 10:30:25,
elastic,elasticsearch,10000,22.56448254,443.1743553,2020-10-08 13:01:09,
dpr,elasticsearch,10000,126.2442168,79.21154929,2020-10-08 13:03:32,
dpr,elasticsearch,100000,1257.202958,79.54165185,2020-10-08 13:28:16,
elastic,elasticsearch,100000,209.681252,476.9143596,2020-10-08 13:07:05,
dpr,faiss_flat,1000,8.223732258,121.5992895,44112.24392,
dpr,faiss_flat,10000,89.72649358,111.4498026,44112.24663,
dpr,faiss_flat,100000,927.0740565,107.8662479,44112.56656,
dpr,faiss_hnsw,1000,8.86507699,112.8021788,44113.37262,"hnsw 128,20,80"
dpr,faiss_hnsw,10000,100.1804832,99.81984193,44113.37413,"hnsw 128,20,80"
dpr,faiss_hnsw,100000,1084.063917,92.24548333,44113.38721,"hnsw 128,20,80"
,retriever,doc_store,n_docs,indexing_time,docs_per_second,date_time,error
1,dpr,elasticsearch,10000,135.8048727600035,73.63506033890373,2020-12-02 06:51:48.587178,
5,dpr,elasticsearch,100000,1352.514667440999,73.93635160290218,2020-12-02 07:23:04.264694,
9,dpr,elasticsearch,500000,6781.024389943996,73.7351720400064,2020-12-02 10:10:42.147031,
0,elastic,elasticsearch,10000,20.694342684997537,483.223852635317,2020-12-02 06:49:00.317977,
4,elastic,elasticsearch,100000,206.47108666299755,484.32931514144724,2020-12-02 06:59:54.055199,
8,elastic,elasticsearch,500000,1032.1480222880054,484.4266415311529,2020-12-02 08:16:15.828533,
2,dpr,faiss_flat,10000,95.10171413100034,105.15057579535569,2020-12-02 06:53:59.472952,
6,dpr,faiss_flat,100000,954.4610684969957,104.77116699738367,2020-12-02 07:39:56.194345,
10,dpr,faiss_flat,500000,4865.149988802004,102.77175444761984,2020-12-02 11:34:34.726687,
3,dpr,faiss_hnsw,10000,103.25490099400486,96.84770314757859,2020-12-02 06:56:14.230579,
7,dpr,faiss_hnsw,100000,1093.9618158599915,91.41086878008392,2020-12-02 07:58:43.508489,
11,dpr,faiss_hnsw,500000,5784.850161597002,86.43266221816312,2020-12-02 13:11:43.328380,

1 retriever doc_store n_docs indexing_time docs_per_second date_time Notes error
2 1 dpr elasticsearch 1000 10000 14.16526405 135.8048727600035 70.59522482 73.63506033890373 2020-10-08 10:30:56 2020-12-02 06:51:48.587178
3 5 elastic dpr elasticsearch 1000 100000 5.805040058 1352.514667440999 172.2640998 73.93635160290218 2020-10-08 10:30:25 2020-12-02 07:23:04.264694
4 9 elastic dpr elasticsearch 10000 500000 22.56448254 6781.024389943996 443.1743553 73.7351720400064 2020-10-08 13:01:09 2020-12-02 10:10:42.147031
5 0 dpr elastic elasticsearch 10000 126.2442168 20.694342684997537 79.21154929 483.223852635317 2020-10-08 13:03:32 2020-12-02 06:49:00.317977
6 4 dpr elastic elasticsearch 100000 1257.202958 206.47108666299755 79.54165185 484.32931514144724 2020-10-08 13:28:16 2020-12-02 06:59:54.055199
7 8 elastic elasticsearch 100000 500000 209.681252 1032.1480222880054 476.9143596 484.4266415311529 2020-10-08 13:07:05 2020-12-02 08:16:15.828533
8 2 dpr faiss_flat 1000 10000 8.223732258 95.10171413100034 121.5992895 105.15057579535569 44112.24392 2020-12-02 06:53:59.472952
9 6 dpr faiss_flat 10000 100000 89.72649358 954.4610684969957 111.4498026 104.77116699738367 44112.24663 2020-12-02 07:39:56.194345
10 10 dpr faiss_flat 100000 500000 927.0740565 4865.149988802004 107.8662479 102.77175444761984 44112.56656 2020-12-02 11:34:34.726687
11 3 dpr faiss_hnsw 1000 10000 8.86507699 103.25490099400486 112.8021788 96.84770314757859 44113.37262 2020-12-02 06:56:14.230579 hnsw 128,20,80
12 7 dpr faiss_hnsw 10000 100000 100.1804832 1093.9618158599915 99.81984193 91.41086878008392 44113.37413 2020-12-02 07:58:43.508489 hnsw 128,20,80
13 11 dpr faiss_hnsw 100000 500000 1084.063917 5784.850161597002 92.24548333 86.43266221816312 44113.38721 2020-12-02 13:11:43.328380 hnsw 128,20,80

View File

@ -1,17 +1,13 @@
retriever,doc_store,n_docs,n_queries,retrieve_time,queries_per_second,seconds_per_query,recall,map,top_k,date_time,error,name,note
dpr,elasticsearch,1000,1085,26.592,40.802,0.025,0.991,0.929,10,2020-10-07 15:06:57,,dpr-elasticsearch,
dpr,elasticsearch,10000,5791,214.425,27.007,0.037,0.975,0.898,10,2020-10-07 15:11:35,,dpr-elasticsearch,
dpr,elasticsearch,100000,5791,886.045,6.536,0.153,0.958,0.863,10,2020-10-07 15:30:52,,dpr-elasticsearch,
dpr,elasticsearch,500000,5791,3824.624,1.514,0.660,0.930,0.805,10,2020-10-07 17:44:02,,dpr-elasticsearch,
dpr,faiss_flat,1000,1085,27.092,40.048,0.025,0.991,0.929,10,2020-10-07 13:06:35,,dpr-faiss_flat,
dpr,faiss_flat,10000,5791,241.524,23.977,0.042,0.975,0.898,10,2020-10-07 13:17:21,,dpr-faiss_flat,
dpr,faiss_flat,100000,5791,1148.181,5.044,0.198,0.958,0.863,10,2020-10-07 14:04:51,,dpr-faiss_flat,
dpr,faiss_flat,500000,5791,5308.016,1.091,0.917,0.930,0.805,10,2020-10-08 10:01:32,,dpr-faiss_flat,
elastic,elasticsearch,1000,1085,4.657,232.978,0.004,0.891,0.748,10,2020-10-07 13:04:47,,elastic-elasticsearch,
elastic,elasticsearch,10000,5791,34.509,167.810,0.006,0.811,0.661,10,2020-10-07 13:07:52,,elastic-elasticsearch,
elastic,elasticsearch,100000,5791,35.529,162.996,0.006,0.717,0.560,10,2020-10-07 13:21:48,,elastic-elasticsearch,
elastic,elasticsearch,500000,5791,60.645,95.491,0.010,0.624,0.452,10,2020-10-07 16:14:52,,elastic-elasticsearch,
dpr,faiss_hnsw,1000,1085,28.640,37.884,0.026,0.991,0.929,10,2020-10-09 07:19:29,,dpr-faiss_hnsw,"128,20,80"
dpr,faiss_hnsw,10000,5791,173.272,33.421,0.030,0.972,0.896,10,2020-10-09 07:23:28,,dpr-faiss_hnsw,"128,20,80"
dpr,faiss_hnsw,100000,5791,451.884,12.815,0.078,0.940,0.849,10,2020-10-09 07:37:56,,dpr-faiss_hnsw,"128,20,80"
dpr,faiss_hnsw,500000,5791,1777.023,3.259,0.307,0.882,0.766,10,2020-10-09,,dpr-faiss_hnsw,"128,20,80"
,retriever,doc_store,n_docs,n_queries,retrieve_time,queries_per_second,seconds_per_query,recall,map,top_k,date_time,error
1,dpr,elasticsearch,10000,5791,233.54168710688828,24.796429587106445,0.040328386652890395,0.9690899671904679,0.8808447974826822,10,2020-12-02 13:18:27.808539,
5,dpr,elasticsearch,100000,5791,928.9148432369257,6.234155953220104,0.1604066384453334,0.9397340701087895,0.8212235461156204,10,2020-12-02 13:53:44.689757,
9,dpr,elasticsearch,500000,5791,3992.798643678747,1.45036114184423,0.6894834473629333,0.8919012260404076,0.7302081363253893,10,2020-12-02 17:35:25.795083,
0,elastic,elasticsearch,10000,5791,23.260322959773475,248.9647289083211,0.00401663321702184,0.8103954412018649,0.6609973604361457,10,2020-12-02 13:13:03.957613,
4,elastic,elasticsearch,100000,5791,35.61682877641579,162.59167924109505,0.006150376234918976,0.7168019340355725,0.559593430418849,10,2020-12-02 13:33:30.417021,
8,elastic,elasticsearch,500000,5791,63.36918604133825,91.38510941614904,0.010942701785760362,0.6238991538594371,0.45245893326535686,10,2020-12-02 16:08:13.070376,
2,dpr,faiss_flat,10000,5791,257.67369354520633,22.474160712040344,0.044495543696288435,0.9746157831117251,0.8978985590667505,10,2020-12-02 13:23:51.002905,
6,dpr,faiss_flat,100000,5791,1182.7107160334417,4.896379073508164,0.2042325532780939,0.9575202901053359,0.8630120493486063,10,2020-12-02 14:18:14.837806,
3,dpr,faiss_hnsw,10000,5791,184.7552210999711,31.34417509568776,0.03190385444655001,0.972198238646175,0.8961883245210815,10,2020-12-02 13:28:33.415220,
7,dpr,faiss_hnsw,100000,5791,450.7693457186833,12.84692505158515,0.0778396383558424,0.9399067518563288,0.8486882354392283,10,2020-12-02 15:10:44.114148,
8,dpr,faiss_flat,500000,5791,5365.806154628852,1.0792413727067556,0.9265767837383616,0.9295458470039717,0.8045832613826054,10,2020-12-02 23:14:44.503864,
9,dpr,faiss_hnsw,500000,5791,1745.922715222303,3.3168707580865915,0.30148898553312087,0.8820583664306683,0.765677378416975,10,2020-12-03 00:18:53.376265,

1 retriever doc_store n_docs n_queries retrieve_time queries_per_second seconds_per_query recall map top_k date_time name error note
2 1 dpr elasticsearch 1000 10000 1085 5791 26.592 233.54168710688828 40.802 24.796429587106445 0.025 0.040328386652890395 0.991 0.9690899671904679 0.929 0.8808447974826822 10 2020-10-07 15:06:57 2020-12-02 13:18:27.808539 dpr-elasticsearch
3 5 dpr elasticsearch 10000 100000 5791 214.425 928.9148432369257 27.007 6.234155953220104 0.037 0.1604066384453334 0.975 0.9397340701087895 0.898 0.8212235461156204 10 2020-10-07 15:11:35 2020-12-02 13:53:44.689757 dpr-elasticsearch
4 9 dpr elasticsearch 100000 500000 5791 886.045 3992.798643678747 6.536 1.45036114184423 0.153 0.6894834473629333 0.958 0.8919012260404076 0.863 0.7302081363253893 10 2020-10-07 15:30:52 2020-12-02 17:35:25.795083 dpr-elasticsearch
5 0 dpr elastic elasticsearch 500000 10000 5791 3824.624 23.260322959773475 1.514 248.9647289083211 0.660 0.00401663321702184 0.930 0.8103954412018649 0.805 0.6609973604361457 10 2020-10-07 17:44:02 2020-12-02 13:13:03.957613 dpr-elasticsearch
6 4 dpr elastic faiss_flat elasticsearch 1000 100000 1085 5791 27.092 35.61682877641579 40.048 162.59167924109505 0.025 0.006150376234918976 0.991 0.7168019340355725 0.929 0.559593430418849 10 2020-10-07 13:06:35 2020-12-02 13:33:30.417021 dpr-faiss_flat
7 8 dpr elastic faiss_flat elasticsearch 10000 500000 5791 241.524 63.36918604133825 23.977 91.38510941614904 0.042 0.010942701785760362 0.975 0.6238991538594371 0.898 0.45245893326535686 10 2020-10-07 13:17:21 2020-12-02 16:08:13.070376 dpr-faiss_flat
8 2 dpr faiss_flat 100000 10000 5791 1148.181 257.67369354520633 5.044 22.474160712040344 0.198 0.044495543696288435 0.958 0.9746157831117251 0.863 0.8978985590667505 10 2020-10-07 14:04:51 2020-12-02 13:23:51.002905 dpr-faiss_flat
9 6 dpr faiss_flat 500000 100000 5791 5308.016 1182.7107160334417 1.091 4.896379073508164 0.917 0.2042325532780939 0.930 0.9575202901053359 0.805 0.8630120493486063 10 2020-10-08 10:01:32 2020-12-02 14:18:14.837806 dpr-faiss_flat
10 3 elastic dpr elasticsearch faiss_hnsw 1000 10000 1085 5791 4.657 184.7552210999711 232.978 31.34417509568776 0.004 0.03190385444655001 0.891 0.972198238646175 0.748 0.8961883245210815 10 2020-10-07 13:04:47 2020-12-02 13:28:33.415220 elastic-elasticsearch
11 7 elastic dpr elasticsearch faiss_hnsw 10000 100000 5791 34.509 450.7693457186833 167.810 12.84692505158515 0.006 0.0778396383558424 0.811 0.9399067518563288 0.661 0.8486882354392283 10 2020-10-07 13:07:52 2020-12-02 15:10:44.114148 elastic-elasticsearch
12 8 elastic dpr elasticsearch faiss_flat 100000 500000 5791 35.529 5365.806154628852 162.996 1.0792413727067556 0.006 0.9265767837383616 0.717 0.9295458470039717 0.560 0.8045832613826054 10 2020-10-07 13:21:48 2020-12-02 23:14:44.503864 elastic-elasticsearch
13 9 elastic dpr elasticsearch faiss_hnsw 500000 5791 60.645 1745.922715222303 95.491 3.3168707580865915 0.010 0.30148898553312087 0.624 0.8820583664306683 0.452 0.765677378416975 10 2020-10-07 16:14:52 2020-12-03 00:18:53.376265 elastic-elasticsearch
dpr faiss_hnsw 1000 1085 28.640 37.884 0.026 0.991 0.929 10 2020-10-09 07:19:29 dpr-faiss_hnsw 128,20,80
dpr faiss_hnsw 10000 5791 173.272 33.421 0.030 0.972 0.896 10 2020-10-09 07:23:28 dpr-faiss_hnsw 128,20,80
dpr faiss_hnsw 100000 5791 451.884 12.815 0.078 0.940 0.849 10 2020-10-09 07:37:56 dpr-faiss_hnsw 128,20,80
dpr faiss_hnsw 500000 5791 1777.023 3.259 0.307 0.882 0.766 10 2020-10-09 dpr-faiss_hnsw 128,20,80

View File

@ -25,12 +25,12 @@ RETRIEVER_TEMPLATE = {
"Query Speed (queries/sec)"
],
"series": {
"s0": "recall",
"s0": "map",
"s1": "time",
"s2": "time"
},
"axes": {
"label": "recall",
"label": "map",
"time_side": "top",
"time_label": "seconds"
},