mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-10-13 17:09:21 +00:00
Add latest benchmark run (#652)
* add latest benchmark run * update templates and fix small json errors * Change scale Co-authored-by: brandenchan <brandenchan@icloud.com>
This commit is contained in:
parent
efc754b166
commit
149d98a0fd
@ -10,10 +10,35 @@
|
||||
"Speed (passages/sec)"
|
||||
],
|
||||
"data": [
|
||||
{"F1": 80.67985794671885, "Model": "RoBERTa", "Speed": 92.3039712094936},
|
||||
{"F1": 78.23306265318686, "Model": "MiniLM", "Speed": 98.62387044489223},
|
||||
{"F1": 74.90271600053505, "Model": "BERT base", "Speed": 99.92750782409666},
|
||||
{"F1": 82.64545708097472, "Model": "BERT large", "Speed": 39.529824033964466},
|
||||
{"F1": 85.26275190954586, "Model": "XLM-RoBERTa", "Speed": 39.29142006004379}
|
||||
{
|
||||
"F1": 82.62983412843887,
|
||||
"Speed": 98.86638639776464,
|
||||
"Model": "RoBERTa"
|
||||
},
|
||||
{
|
||||
"F1": 78.90026641413856,
|
||||
"Speed": 181.96379531485616,
|
||||
"Model": "MiniLM"
|
||||
},
|
||||
{
|
||||
"F1": 74.32668866064459,
|
||||
"Speed": 106.04748306200683,
|
||||
"Model": "BERT base"
|
||||
},
|
||||
{
|
||||
"F1": 83.29492827667042,
|
||||
"Speed": 40.408497243719076,
|
||||
"Model": "BERT large"
|
||||
},
|
||||
{
|
||||
"F1": 84.62174414643722,
|
||||
"Speed": 40.483264542292716,
|
||||
"Model": "XLM-RoBERTa"
|
||||
},
|
||||
{
|
||||
"F1": 42.342513261953935,
|
||||
"Speed": 160.41712955027901,
|
||||
"Model": "DistilBERT"
|
||||
}
|
||||
]
|
||||
}
|
@ -1,77 +1,101 @@
|
||||
{
|
||||
"chart_type": "LineChart",
|
||||
"title": "Retriever Accuracy",
|
||||
"subtitle": "mAP at different number of docs",
|
||||
"description": "Here you can see how the mean avg. precision (mAP) of the retriever decays as the number of documents increases. The set up is the same as the above querying benchmark except that a varying number of negative documents are used to fill the document store.",
|
||||
"columns": [
|
||||
"n_docs",
|
||||
"BM25 / ElasticSearch",
|
||||
"DPR / ElasticSearch or FAISS (flat)",
|
||||
"DPR / FAISS (HSNW)"
|
||||
],
|
||||
"axis": [
|
||||
{ "x": "Number of docs", "y": "mAP" }
|
||||
],
|
||||
"data": [
|
||||
{
|
||||
"model": "DPR / ElasticSearch or FAISS (flat)",
|
||||
"n_docs": 1000,
|
||||
"map": 0.929
|
||||
},
|
||||
{
|
||||
"model": "DPR / ElasticSearch or FAISS (flat)",
|
||||
"n_docs": 10000,
|
||||
"map": 0.898
|
||||
},
|
||||
{
|
||||
"model": "DPR / ElasticSearch or FAISS (flat)",
|
||||
"n_docs": 100000,
|
||||
"map": 0.863
|
||||
},
|
||||
{
|
||||
"model": "DPR / ElasticSearch or FAISS (flat)",
|
||||
"n_docs": 500000,
|
||||
"map": 0.805
|
||||
},
|
||||
{
|
||||
"model": "BM25 / ElasticSearch",
|
||||
"n_docs": 1000,
|
||||
"map": 0.748
|
||||
},
|
||||
{
|
||||
"model": "BM25 / ElasticSearch",
|
||||
"n_docs": 10000,
|
||||
"map": 0.6609999999999999
|
||||
},
|
||||
{
|
||||
"model": "BM25 / ElasticSearch",
|
||||
"n_docs": 100000,
|
||||
"map": 0.56
|
||||
},
|
||||
{
|
||||
"model": "BM25 / ElasticSearch",
|
||||
"n_docs": 500000,
|
||||
"map": 0.452
|
||||
},
|
||||
{
|
||||
"model": "DPR / FAISS (HSNW)",
|
||||
"n_docs": 1000,
|
||||
"map": 0.929
|
||||
},
|
||||
{
|
||||
"model": "DPR / FAISS (HSNW)",
|
||||
"n_docs": 10000,
|
||||
"map": 0.8959999999999999
|
||||
},
|
||||
{
|
||||
"model": "DPR / FAISS (HSNW)",
|
||||
"n_docs": 100000,
|
||||
"map": 0.8490000000000001
|
||||
},
|
||||
{
|
||||
"model": "DPR / FAISS (HSNW)",
|
||||
"n_docs": 500000,
|
||||
"map": 0.7659999999999999
|
||||
}
|
||||
]
|
||||
"chart_type": "LineChart",
|
||||
"title": "Retriever Accuracy",
|
||||
"subtitle": "mAP at different number of docs",
|
||||
"description": "Here you can see how the mean avg. precision (mAP) of the retriever decays as the number of documents increases. The set up is the same as the above querying benchmark except that a varying number of negative documents are used to fill the document store.",
|
||||
"columns": [
|
||||
"n_docs",
|
||||
"BM25 / ElasticSearch",
|
||||
"DPR / ElasticSearch",
|
||||
"DPR / FAISS (flat)",
|
||||
"DPR / FAISS (HSNW)"
|
||||
],
|
||||
"axis": [
|
||||
{
|
||||
"x": "Number of docs",
|
||||
"y": "mAP"
|
||||
}
|
||||
],
|
||||
"data": [
|
||||
{
|
||||
"model": "DPR / ElasticSearch",
|
||||
"n_docs": 1000,
|
||||
"map": 0.929
|
||||
},
|
||||
{
|
||||
"model": "DPR / ElasticSearch",
|
||||
"n_docs": 10000,
|
||||
"map": 0.881
|
||||
},
|
||||
{
|
||||
"model": "DPR / ElasticSearch",
|
||||
"n_docs": 100000,
|
||||
"map": 0.821
|
||||
},
|
||||
{
|
||||
"model": "DPR / ElasticSearch",
|
||||
"n_docs": 500000,
|
||||
"map": 0.730
|
||||
},
|
||||
{
|
||||
"model": "DPR / FAISS (flat)",
|
||||
"n_docs": 1000,
|
||||
"map": 0.929
|
||||
},
|
||||
{
|
||||
"model": "DPR / FAISS (flat)",
|
||||
"n_docs": 10000,
|
||||
"map": 0.898
|
||||
},
|
||||
{
|
||||
"model": "DPR / FAISS (flat)",
|
||||
"n_docs": 100000,
|
||||
"map": 0.863
|
||||
},
|
||||
{
|
||||
"model": "DPR / FAISS (flat)",
|
||||
"n_docs": 500000,
|
||||
"map": 0.805
|
||||
},
|
||||
{
|
||||
"model": "BM25 / ElasticSearch",
|
||||
"n_docs": 1000,
|
||||
"map": 0.748
|
||||
},
|
||||
{
|
||||
"model": "BM25 / ElasticSearch",
|
||||
"n_docs": 10000,
|
||||
"map": 0.6609999999999999
|
||||
},
|
||||
{
|
||||
"model": "BM25 / ElasticSearch",
|
||||
"n_docs": 100000,
|
||||
"map": 0.56
|
||||
},
|
||||
{
|
||||
"model": "BM25 / ElasticSearch",
|
||||
"n_docs": 500000,
|
||||
"map": 0.452
|
||||
},
|
||||
{
|
||||
"model": "DPR / FAISS (HSNW)",
|
||||
"n_docs": 1000,
|
||||
"map": 0.929
|
||||
},
|
||||
{
|
||||
"model": "DPR / FAISS (HSNW)",
|
||||
"n_docs": 10000,
|
||||
"map": 0.896
|
||||
},
|
||||
{
|
||||
"model": "DPR / FAISS (HSNW)",
|
||||
"n_docs": 100000,
|
||||
"map": 0.849
|
||||
},
|
||||
{
|
||||
"model": "DPR / FAISS (HSNW)",
|
||||
"n_docs": 500000,
|
||||
"map": 0.766
|
||||
}
|
||||
]
|
||||
}
|
@ -1,54 +1,53 @@
|
||||
{
|
||||
"chart_type": "BarChart",
|
||||
"title": "Retriever Performance",
|
||||
"subtitle": "Time and Accuracy Benchmarks",
|
||||
"description": "Comparison of the speed and accuracy of different DocumentStore / Retriever combinations on 100k documents. <b>Indexing speed</b> (in docs/sec) refers to how quickly Documents can be inserted into a DocumentStore. <b>Querying speed</b> (in queries/sec) refers to the speed at which the system returns relevant Documents when presented with a query.\n\nThe dataset used is Wikipedia, split into 100 word passages (from <a href='https://github.com/facebookresearch/DPR/blob/master/data/download_data.py'>here</a>)). \n\nFor querying, we use the Natural Questions development set in combination with the wiki passages. The Document Store is populated with the 100 word passages in which the answer spans occur (i.e. gold passages) as well as a random selection of 100 word passages in which the answer spans do not occur (i.e. negative passages). We take a total of 100k gold and negative passages. Query and document embedding are generated by the <i>\"facebook/dpr-question_encoder-single-nq-base\"</i> and <i>\"facebook/dpr-ctx_encoder-single-nq-base\"</i> models. The retriever returns 10 candidates and both the recall and mAP scores are calculated on these 10.\n\nFor FAISS HNSW, we use <i>n_links=128</i>, <i>efSearch=20</i> and <i>efConstruction=80</i>. Both index and query benchmarks are performed on an AWS P3.2xlarge instance which is accelerated by an Nvidia V100 GPU.",
|
||||
"bars": "horizontal",
|
||||
"columns": [
|
||||
"Model",
|
||||
"mAP",
|
||||
"Index Speed (docs/sec)",
|
||||
"Query Speed (queries/sec)"
|
||||
],
|
||||
"series": {
|
||||
"s0": "map",
|
||||
"s1": "time",
|
||||
"s2": "time"
|
||||
},
|
||||
"axes": {
|
||||
"label": "map",
|
||||
"time_side": "top",
|
||||
"time_label": "seconds"
|
||||
},
|
||||
"data": [
|
||||
{
|
||||
"model": "DPR / ElasticSearch",
|
||||
"n_docs": 100000,
|
||||
"index_speed": 79.54165185,
|
||||
"query_speed": 6.5360000000000005,
|
||||
"map": 86.3
|
||||
"chart_type": "BarChart",
|
||||
"title": "Retriever Performance",
|
||||
"subtitle": "Time and Accuracy Benchmarks",
|
||||
"description": "Comparison of the speed and accuracy of different DocumentStore / Retriever combinations on 100k documents. <b>Indexing speed</b> (in docs/sec) refers to how quickly Documents can be inserted into a DocumentStore. <b>Querying speed</b> (in queries/sec) refers to the speed at which the system returns relevant Documents when presented with a query.\n\nThe dataset used is Wikipedia, split into 100 word passages (from <a href='https://github.com/facebookresearch/DPR/blob/master/data/download_data.py'>here</a>)). \n\nFor querying, we use the Natural Questions development set in combination with the wiki passages. The Document Store is populated with the 100 word passages in which the answer spans occur (i.e. gold passages) as well as a random selection of 100 word passages in which the answer spans do not occur (i.e. negative passages). We take a total of 100k gold and negative passages. Query and document embedding are generated by the <i>\"facebook/dpr-question_encoder-single-nq-base\"</i> and <i>\"facebook/dpr-ctx_encoder-single-nq-base\"</i> models. The retriever returns 10 candidates and both the recall and mAP scores are calculated on these 10.\n\nFor FAISS HNSW, we use <i>n_links=128</i>, <i>efSearch=20</i> and <i>efConstruction=80</i>. Both index and query benchmarks are performed on an AWS P3.2xlarge instance which is accelerated by an Nvidia V100 GPU.",
|
||||
"bars": "horizontal",
|
||||
"columns": [
|
||||
"Model",
|
||||
"mAP",
|
||||
"Index Speed (docs/sec)",
|
||||
"Query Speed (queries/sec)"
|
||||
],
|
||||
"series": {
|
||||
"s0": "map",
|
||||
"s1": "time",
|
||||
"s2": "time"
|
||||
},
|
||||
{
|
||||
"model": "DPR / FAISS (flat)",
|
||||
"n_docs": 100000,
|
||||
"index_speed": 107.8662479,
|
||||
"query_speed": 5.044,
|
||||
"map": 86.3
|
||||
"axes": {
|
||||
"label": "map",
|
||||
"time_side": "top",
|
||||
"time_label": "seconds"
|
||||
},
|
||||
{
|
||||
"model": "BM25 / ElasticSearch",
|
||||
"n_docs": 100000,
|
||||
"index_speed": 476.9143596,
|
||||
"query_speed": 162.996,
|
||||
"map": 56.0
|
||||
},
|
||||
{
|
||||
"model": "DPR / FAISS (HSNW)",
|
||||
"n_docs": 100000,
|
||||
"index_speed": 92.24548333,
|
||||
"query_speed": 12.815,
|
||||
"map": 84.9
|
||||
}
|
||||
]
|
||||
|
||||
}
|
||||
"data": [
|
||||
{
|
||||
"model": "DPR / ElasticSearch",
|
||||
"n_docs": 100000,
|
||||
"index_speed": 73.93635160290218,
|
||||
"query_speed": 6.23,
|
||||
"map": 82
|
||||
},
|
||||
{
|
||||
"model": "DPR / FAISS (flat)",
|
||||
"n_docs": 100000,
|
||||
"index_speed": 104.77116699738369,
|
||||
"query_speed": 4.89,
|
||||
"map": 86.3
|
||||
},
|
||||
{
|
||||
"model": "BM25 / ElasticSearch",
|
||||
"n_docs": 100000,
|
||||
"index_speed": 484.32931514144724,
|
||||
"query_speed": 162.59,
|
||||
"map": 56
|
||||
},
|
||||
{
|
||||
"model": "DPR / FAISS (HSNW)",
|
||||
"n_docs": 100000,
|
||||
"index_speed": 91.41086878008392,
|
||||
"query_speed": 12.85,
|
||||
"map": 84.9
|
||||
}
|
||||
]
|
||||
}
|
@ -5,16 +5,18 @@
|
||||
"description": "Here you can see how the query speed of different Retriever / DocumentStore combinations scale as the number of documents increases. The set up is the same as the above querying benchmark except that a varying number of negative documents are used to fill the document store.",
|
||||
"columns": [
|
||||
"n_docs",
|
||||
"BM25 / ElasticSearch",
|
||||
"BM25 / ElasticSearch",
|
||||
"DPR / ElasticSearch",
|
||||
"DPR / FAISS (flat)",
|
||||
"DPR / FAISS (HSNW)"
|
||||
],
|
||||
"axis": [
|
||||
{ "x": "Number of docs", "y": "Queries/sec" }
|
||||
],
|
||||
"data":
|
||||
[
|
||||
"axis": [
|
||||
{
|
||||
"x": "Number of docs",
|
||||
"y": "Queries/sec"
|
||||
}
|
||||
],
|
||||
"data": [
|
||||
{
|
||||
"model": "DPR / ElasticSearch",
|
||||
"n_docs": 1000,
|
||||
@ -23,17 +25,17 @@
|
||||
{
|
||||
"model": "DPR / ElasticSearch",
|
||||
"n_docs": 10000,
|
||||
"query_speed": 27.006999999999998
|
||||
"query_speed": 24.8
|
||||
},
|
||||
{
|
||||
"model": "DPR / ElasticSearch",
|
||||
"n_docs": 100000,
|
||||
"query_speed": 6.5360000000000005
|
||||
"query_speed": 6.23
|
||||
},
|
||||
{
|
||||
"model": "DPR / ElasticSearch",
|
||||
"n_docs": 500000,
|
||||
"query_speed": 1.514
|
||||
"query_speed": 1.45
|
||||
},
|
||||
{
|
||||
"model": "DPR / FAISS (flat)",
|
||||
@ -43,17 +45,17 @@
|
||||
{
|
||||
"model": "DPR / FAISS (flat)",
|
||||
"n_docs": 10000,
|
||||
"query_speed": 23.976999999999997
|
||||
"query_speed": 22.47
|
||||
},
|
||||
{
|
||||
"model": "DPR / FAISS (flat)",
|
||||
"n_docs": 100000,
|
||||
"query_speed": 5.044
|
||||
"query_speed": 4.90
|
||||
},
|
||||
{
|
||||
"model": "DPR / FAISS (flat)",
|
||||
"n_docs": 500000,
|
||||
"query_speed": 1.091
|
||||
"query_speed": 1.08
|
||||
},
|
||||
{
|
||||
"model": "BM25 / ElasticSearch",
|
||||
@ -63,17 +65,17 @@
|
||||
{
|
||||
"model": "BM25 / ElasticSearch",
|
||||
"n_docs": 10000,
|
||||
"query_speed": 167.81
|
||||
"query_speed": 248.97
|
||||
},
|
||||
{
|
||||
"model": "BM25 / ElasticSearch",
|
||||
"n_docs": 100000,
|
||||
"query_speed": 162.996
|
||||
"query_speed": 162.59
|
||||
},
|
||||
{
|
||||
"model": "BM25 / ElasticSearch",
|
||||
"n_docs": 500000,
|
||||
"query_speed": 95.491
|
||||
"query_speed": 91.39
|
||||
},
|
||||
{
|
||||
"model": "DPR / FAISS (HSNW)",
|
||||
@ -83,17 +85,17 @@
|
||||
{
|
||||
"model": "DPR / FAISS (HSNW)",
|
||||
"n_docs": 10000,
|
||||
"query_speed": 33.421
|
||||
"query_speed": 31.34
|
||||
},
|
||||
{
|
||||
"model": "DPR / FAISS (HSNW)",
|
||||
"n_docs": 100000,
|
||||
"query_speed": 12.815
|
||||
"query_speed": 12.85
|
||||
},
|
||||
{
|
||||
"model": "DPR / FAISS (HSNW)",
|
||||
"n_docs": 500000,
|
||||
"query_speed": 3.259
|
||||
"query_speed": 3.32
|
||||
}
|
||||
]
|
||||
}
|
@ -1,6 +1,7 @@
|
||||
,EM,f1,top_n_accuracy,top_n,reader_time,seconds_per_query,passages_per_second,reader,error
|
||||
0,0.7589752233271532,0.8067985794671885,0.9671329849991572,5,133.79706027999998,0.011275666634080564,92.30397120949361,deepset/roberta-base-squad2,
|
||||
1,0.7359683128265633,0.7823306265318686,0.9714309792684982,5,125.22323393199997,0.010553112584864317,98.62387044489225,deepset/minilm-uncased-squad2,
|
||||
2,0.700825889094893,0.7490271600053505,0.9585369964604753,5,123.58959278499992,0.010415438461570867,99.92750782409666,deepset/bert-base-cased-squad2,
|
||||
3,0.7821506826226192,0.8264545708097472,0.9762346199224675,5,312.42233685099995,0.026329204184308102,39.529824033964466,deepset/bert-large-uncased-whole-word-masking-squad2,
|
||||
4,0.8099612337771785,0.8526275190954586,0.9772459126917242,5,314.3179854819998,0.026488958830439897,39.29142006004379,deepset/xlm-roberta-large-squad2,
|
||||
0,0.7836676217765043,0.8262983412843887,0.9742963087813922,5,124.91606550999859,0.01052722615118815,98.86638639776463,deepset/roberta-base-squad2,
|
||||
1,0.7439743805831789,0.7890026641413856,0.9720209000505646,5,67.87064415001078,0.005719757639475036,181.96379531485616,deepset/minilm-uncased-squad2,
|
||||
2,0.6947581324793528,0.7432668866064459,0.9557559413450194,5,116.45726653200109,0.009814365964267747,106.04748306200683,deepset/bert-base-cased-squad2,
|
||||
3,0.7900724759817968,0.8329492827667042,0.976908815101972,5,305.62878707199707,0.02575668187021718,40.40849724371908,deepset/bert-large-uncased-whole-word-masking-squad2,
|
||||
4,0.803472105174448,0.846217441464372,0.9742120343839542,5,305.06433064700104,0.025709112645120602,40.48326454229272,deepset/xlm-roberta-large-squad2,
|
||||
5,0.3730827574582842,0.42342513261953935,0.9539019046013821,5,76.98679084099422,0.006488015408814615,160.417129550279,distilbert-base-uncased-distilled-squad,
|
||||
|
|
@ -167,8 +167,12 @@ def benchmark_querying(n_docs_options,
|
||||
"error": None
|
||||
}
|
||||
|
||||
doc_store.delete_all_documents(index=doc_index)
|
||||
doc_store.delete_all_documents(index=label_index)
|
||||
logger.info("Deleting all docs from this run ...")
|
||||
if isinstance(doc_store, FAISSDocumentStore):
|
||||
doc_store.session.close()
|
||||
else:
|
||||
doc_store.delete_all_documents(index=doc_index)
|
||||
doc_store.delete_all_documents(index=label_index)
|
||||
time.sleep(5)
|
||||
del doc_store
|
||||
del retriever
|
||||
@ -190,8 +194,12 @@ def benchmark_querying(n_docs_options,
|
||||
"date_time": datetime.datetime.now(),
|
||||
"error": str(tb)
|
||||
}
|
||||
doc_store.delete_all_documents(index=doc_index)
|
||||
doc_store.delete_all_documents(index=label_index)
|
||||
logger.info("Deleting all docs from this run ...")
|
||||
if isinstance(doc_store, FAISSDocumentStore):
|
||||
doc_store.session.close()
|
||||
else:
|
||||
doc_store.delete_all_documents(index=doc_index)
|
||||
doc_store.delete_all_documents(index=label_index)
|
||||
time.sleep(5)
|
||||
del doc_store
|
||||
del retriever
|
||||
|
@ -1,13 +1,13 @@
|
||||
retriever,doc_store,n_docs,indexing_time,docs_per_second,date_time,Notes
|
||||
dpr,elasticsearch,1000,14.16526405,70.59522482,2020-10-08 10:30:56,
|
||||
elastic,elasticsearch,1000,5.805040058,172.2640998,2020-10-08 10:30:25,
|
||||
elastic,elasticsearch,10000,22.56448254,443.1743553,2020-10-08 13:01:09,
|
||||
dpr,elasticsearch,10000,126.2442168,79.21154929,2020-10-08 13:03:32,
|
||||
dpr,elasticsearch,100000,1257.202958,79.54165185,2020-10-08 13:28:16,
|
||||
elastic,elasticsearch,100000,209.681252,476.9143596,2020-10-08 13:07:05,
|
||||
dpr,faiss_flat,1000,8.223732258,121.5992895,44112.24392,
|
||||
dpr,faiss_flat,10000,89.72649358,111.4498026,44112.24663,
|
||||
dpr,faiss_flat,100000,927.0740565,107.8662479,44112.56656,
|
||||
dpr,faiss_hnsw,1000,8.86507699,112.8021788,44113.37262,"hnsw 128,20,80"
|
||||
dpr,faiss_hnsw,10000,100.1804832,99.81984193,44113.37413,"hnsw 128,20,80"
|
||||
dpr,faiss_hnsw,100000,1084.063917,92.24548333,44113.38721,"hnsw 128,20,80"
|
||||
,retriever,doc_store,n_docs,indexing_time,docs_per_second,date_time,error
|
||||
1,dpr,elasticsearch,10000,135.8048727600035,73.63506033890373,2020-12-02 06:51:48.587178,
|
||||
5,dpr,elasticsearch,100000,1352.514667440999,73.93635160290218,2020-12-02 07:23:04.264694,
|
||||
9,dpr,elasticsearch,500000,6781.024389943996,73.7351720400064,2020-12-02 10:10:42.147031,
|
||||
0,elastic,elasticsearch,10000,20.694342684997537,483.223852635317,2020-12-02 06:49:00.317977,
|
||||
4,elastic,elasticsearch,100000,206.47108666299755,484.32931514144724,2020-12-02 06:59:54.055199,
|
||||
8,elastic,elasticsearch,500000,1032.1480222880054,484.4266415311529,2020-12-02 08:16:15.828533,
|
||||
2,dpr,faiss_flat,10000,95.10171413100034,105.15057579535569,2020-12-02 06:53:59.472952,
|
||||
6,dpr,faiss_flat,100000,954.4610684969957,104.77116699738367,2020-12-02 07:39:56.194345,
|
||||
10,dpr,faiss_flat,500000,4865.149988802004,102.77175444761984,2020-12-02 11:34:34.726687,
|
||||
3,dpr,faiss_hnsw,10000,103.25490099400486,96.84770314757859,2020-12-02 06:56:14.230579,
|
||||
7,dpr,faiss_hnsw,100000,1093.9618158599915,91.41086878008392,2020-12-02 07:58:43.508489,
|
||||
11,dpr,faiss_hnsw,500000,5784.850161597002,86.43266221816312,2020-12-02 13:11:43.328380,
|
||||
|
|
@ -1,17 +1,13 @@
|
||||
retriever,doc_store,n_docs,n_queries,retrieve_time,queries_per_second,seconds_per_query,recall,map,top_k,date_time,error,name,note
|
||||
dpr,elasticsearch,1000,1085,26.592,40.802,0.025,0.991,0.929,10,2020-10-07 15:06:57,,dpr-elasticsearch,
|
||||
dpr,elasticsearch,10000,5791,214.425,27.007,0.037,0.975,0.898,10,2020-10-07 15:11:35,,dpr-elasticsearch,
|
||||
dpr,elasticsearch,100000,5791,886.045,6.536,0.153,0.958,0.863,10,2020-10-07 15:30:52,,dpr-elasticsearch,
|
||||
dpr,elasticsearch,500000,5791,3824.624,1.514,0.660,0.930,0.805,10,2020-10-07 17:44:02,,dpr-elasticsearch,
|
||||
dpr,faiss_flat,1000,1085,27.092,40.048,0.025,0.991,0.929,10,2020-10-07 13:06:35,,dpr-faiss_flat,
|
||||
dpr,faiss_flat,10000,5791,241.524,23.977,0.042,0.975,0.898,10,2020-10-07 13:17:21,,dpr-faiss_flat,
|
||||
dpr,faiss_flat,100000,5791,1148.181,5.044,0.198,0.958,0.863,10,2020-10-07 14:04:51,,dpr-faiss_flat,
|
||||
dpr,faiss_flat,500000,5791,5308.016,1.091,0.917,0.930,0.805,10,2020-10-08 10:01:32,,dpr-faiss_flat,
|
||||
elastic,elasticsearch,1000,1085,4.657,232.978,0.004,0.891,0.748,10,2020-10-07 13:04:47,,elastic-elasticsearch,
|
||||
elastic,elasticsearch,10000,5791,34.509,167.810,0.006,0.811,0.661,10,2020-10-07 13:07:52,,elastic-elasticsearch,
|
||||
elastic,elasticsearch,100000,5791,35.529,162.996,0.006,0.717,0.560,10,2020-10-07 13:21:48,,elastic-elasticsearch,
|
||||
elastic,elasticsearch,500000,5791,60.645,95.491,0.010,0.624,0.452,10,2020-10-07 16:14:52,,elastic-elasticsearch,
|
||||
dpr,faiss_hnsw,1000,1085,28.640,37.884,0.026,0.991,0.929,10,2020-10-09 07:19:29,,dpr-faiss_hnsw,"128,20,80"
|
||||
dpr,faiss_hnsw,10000,5791,173.272,33.421,0.030,0.972,0.896,10,2020-10-09 07:23:28,,dpr-faiss_hnsw,"128,20,80"
|
||||
dpr,faiss_hnsw,100000,5791,451.884,12.815,0.078,0.940,0.849,10,2020-10-09 07:37:56,,dpr-faiss_hnsw,"128,20,80"
|
||||
dpr,faiss_hnsw,500000,5791,1777.023,3.259,0.307,0.882,0.766,10,2020-10-09,,dpr-faiss_hnsw,"128,20,80"
|
||||
,retriever,doc_store,n_docs,n_queries,retrieve_time,queries_per_second,seconds_per_query,recall,map,top_k,date_time,error
|
||||
1,dpr,elasticsearch,10000,5791,233.54168710688828,24.796429587106445,0.040328386652890395,0.9690899671904679,0.8808447974826822,10,2020-12-02 13:18:27.808539,
|
||||
5,dpr,elasticsearch,100000,5791,928.9148432369257,6.234155953220104,0.1604066384453334,0.9397340701087895,0.8212235461156204,10,2020-12-02 13:53:44.689757,
|
||||
9,dpr,elasticsearch,500000,5791,3992.798643678747,1.45036114184423,0.6894834473629333,0.8919012260404076,0.7302081363253893,10,2020-12-02 17:35:25.795083,
|
||||
0,elastic,elasticsearch,10000,5791,23.260322959773475,248.9647289083211,0.00401663321702184,0.8103954412018649,0.6609973604361457,10,2020-12-02 13:13:03.957613,
|
||||
4,elastic,elasticsearch,100000,5791,35.61682877641579,162.59167924109505,0.006150376234918976,0.7168019340355725,0.559593430418849,10,2020-12-02 13:33:30.417021,
|
||||
8,elastic,elasticsearch,500000,5791,63.36918604133825,91.38510941614904,0.010942701785760362,0.6238991538594371,0.45245893326535686,10,2020-12-02 16:08:13.070376,
|
||||
2,dpr,faiss_flat,10000,5791,257.67369354520633,22.474160712040344,0.044495543696288435,0.9746157831117251,0.8978985590667505,10,2020-12-02 13:23:51.002905,
|
||||
6,dpr,faiss_flat,100000,5791,1182.7107160334417,4.896379073508164,0.2042325532780939,0.9575202901053359,0.8630120493486063,10,2020-12-02 14:18:14.837806,
|
||||
3,dpr,faiss_hnsw,10000,5791,184.7552210999711,31.34417509568776,0.03190385444655001,0.972198238646175,0.8961883245210815,10,2020-12-02 13:28:33.415220,
|
||||
7,dpr,faiss_hnsw,100000,5791,450.7693457186833,12.84692505158515,0.0778396383558424,0.9399067518563288,0.8486882354392283,10,2020-12-02 15:10:44.114148,
|
||||
8,dpr,faiss_flat,500000,5791,5365.806154628852,1.0792413727067556,0.9265767837383616,0.9295458470039717,0.8045832613826054,10,2020-12-02 23:14:44.503864,
|
||||
9,dpr,faiss_hnsw,500000,5791,1745.922715222303,3.3168707580865915,0.30148898553312087,0.8820583664306683,0.765677378416975,10,2020-12-03 00:18:53.376265,
|
||||
|
|
@ -25,12 +25,12 @@ RETRIEVER_TEMPLATE = {
|
||||
"Query Speed (queries/sec)"
|
||||
],
|
||||
"series": {
|
||||
"s0": "recall",
|
||||
"s0": "map",
|
||||
"s1": "time",
|
||||
"s2": "time"
|
||||
},
|
||||
"axes": {
|
||||
"label": "recall",
|
||||
"label": "map",
|
||||
"time_side": "top",
|
||||
"time_label": "seconds"
|
||||
},
|
||||
|
Loading…
x
Reference in New Issue
Block a user