mirror of
https://github.com/deepset-ai/haystack.git
synced 2026-01-07 12:37:27 +00:00
feat: Add SimilarityRanker to Haystack 2.0 (#5923)
* Initial SimilarityRanker
This commit is contained in:
parent
ccc9f010bb
commit
1cdff6427e
3
haystack/preview/components/rankers/__init__.py
Normal file
3
haystack/preview/components/rankers/__init__.py
Normal file
@ -0,0 +1,3 @@
|
||||
from haystack.preview.components.rankers.similarity import SimilarityRanker
|
||||
|
||||
__all__ = ["SimilarityRanker"]
|
||||
108
haystack/preview/components/rankers/similarity.py
Normal file
108
haystack/preview/components/rankers/similarity.py
Normal file
@ -0,0 +1,108 @@
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import List, Union, Dict, Any
|
||||
|
||||
from haystack.preview import ComponentError, Document, component, default_from_dict, default_to_dict
|
||||
from haystack.preview.lazy_imports import LazyImport
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
with LazyImport(message="Run 'pip install transformers[torch,sentencepiece]==4.32.1'") as torch_and_transformers_import:
|
||||
import torch
|
||||
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
||||
|
||||
|
||||
@component
|
||||
class SimilarityRanker:
|
||||
"""
|
||||
Ranks documents based on query similarity.
|
||||
|
||||
Usage example:
|
||||
```
|
||||
from haystack.preview import Document
|
||||
from haystack.preview.components.rankers import SimilarityRanker
|
||||
|
||||
sampler = SimilarityRanker()
|
||||
docs = [Document(text="Paris"), Document(text="Berlin")]
|
||||
query = "City in Germany"
|
||||
output = sampler.run(query=query, documents=docs)
|
||||
docs = output["documents"]
|
||||
assert len(docs) == 2
|
||||
assert docs[0].text == "Berlin"
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, model_name_or_path: Union[str, Path] = "cross-encoder/ms-marco-MiniLM-L-6-v2", device: str = "cpu"
|
||||
):
|
||||
"""
|
||||
Creates an instance of SimilarityRanker.
|
||||
|
||||
:param model_name_or_path: Path to a pre-trained sentence-transformers model.
|
||||
:param device: torch device (for example, cuda:0, cpu, mps) to limit model inference to a specific device.
|
||||
"""
|
||||
torch_and_transformers_import.check()
|
||||
|
||||
self.model_name_or_path = model_name_or_path
|
||||
self.device = device
|
||||
self.model = None
|
||||
self.tokenizer = None
|
||||
|
||||
def warm_up(self):
|
||||
"""
|
||||
Warm up the model and tokenizer used in scoring the documents.
|
||||
"""
|
||||
if self.model_name_or_path and not self.model:
|
||||
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name_or_path)
|
||||
self.model = self.model.to(self.device)
|
||||
self.model.eval()
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path)
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""
|
||||
Serialize this component to a dictionary.
|
||||
"""
|
||||
return default_to_dict(self, device=self.device, model_name_or_path=self.model_name_or_path)
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, data: Dict[str, Any]) -> "SimilarityRanker":
|
||||
"""
|
||||
Deserialize this component from a dictionary.
|
||||
"""
|
||||
return default_from_dict(cls, data)
|
||||
|
||||
@component.output_types(documents=List[Document])
|
||||
def run(self, query: str, documents: List[Document]):
|
||||
"""
|
||||
Returns a list of documents ranked by their similarity to the given query
|
||||
|
||||
:param query: Query string.
|
||||
:param documents: List of Documents.
|
||||
:return: List of Documents sorted by (desc.) similarity with the query.
|
||||
"""
|
||||
if not documents:
|
||||
return {"documents": []}
|
||||
|
||||
# If a model path is provided but the model isn't loaded
|
||||
if self.model_name_or_path and not self.model:
|
||||
raise ComponentError(
|
||||
f"The component {self.__class__.__name__} not warmed up. Run 'warm_up()' before calling 'run()'."
|
||||
)
|
||||
|
||||
query_doc_pairs = [[query, doc.text] for doc in documents]
|
||||
features = self.tokenizer(
|
||||
query_doc_pairs, padding=True, truncation=True, return_tensors="pt"
|
||||
).to( # type: ignore
|
||||
self.device
|
||||
)
|
||||
with torch.inference_mode():
|
||||
similarity_scores = self.model(**features).logits.squeeze() # type: ignore
|
||||
|
||||
_, sorted_indices = torch.sort(similarity_scores, descending=True)
|
||||
ranked_docs = []
|
||||
for sorted_index_tensor in sorted_indices:
|
||||
i = sorted_index_tensor.item()
|
||||
documents[i].score = similarity_scores[i].item()
|
||||
ranked_docs.append(documents[i])
|
||||
return {"documents": ranked_docs}
|
||||
@ -0,0 +1,4 @@
|
||||
---
|
||||
preview:
|
||||
- |
|
||||
Adds SimilarityRanker, a component that ranks a list of Documents based on their similarity to the query.
|
||||
74
test/preview/components/rankers/test_similarity.py
Normal file
74
test/preview/components/rankers/test_similarity.py
Normal file
@ -0,0 +1,74 @@
|
||||
import pytest
|
||||
|
||||
from haystack.preview import Document, ComponentError
|
||||
from haystack.preview.components.rankers.similarity import SimilarityRanker
|
||||
|
||||
|
||||
class TestSimilarityRanker:
|
||||
@pytest.mark.unit
|
||||
def test_to_dict(self):
|
||||
component = SimilarityRanker(model_name_or_path="cross-encoder/ms-marco-MiniLM-L-6-v2")
|
||||
data = component.to_dict()
|
||||
assert data == {
|
||||
"type": "SimilarityRanker",
|
||||
"init_parameters": {"device": "cpu", "model_name_or_path": "cross-encoder/ms-marco-MiniLM-L-6-v2"},
|
||||
}
|
||||
|
||||
@pytest.mark.unit
|
||||
def test_to_dict_with_custom_init_parameters(self):
|
||||
component = SimilarityRanker()
|
||||
data = component.to_dict()
|
||||
assert data == {
|
||||
"type": "SimilarityRanker",
|
||||
"init_parameters": {"device": "cpu", "model_name_or_path": "cross-encoder/ms-marco-MiniLM-L-6-v2"},
|
||||
}
|
||||
|
||||
@pytest.mark.integration
|
||||
def test_from_dict(self):
|
||||
data = {
|
||||
"type": "SimilarityRanker",
|
||||
"init_parameters": {"device": "cpu", "model_name_or_path": "cross-encoder/ms-marco-MiniLM-L-6-v2"},
|
||||
}
|
||||
component = SimilarityRanker.from_dict(data)
|
||||
assert component.model_name_or_path == "cross-encoder/ms-marco-MiniLM-L-6-v2"
|
||||
|
||||
@pytest.mark.integration
|
||||
@pytest.mark.parametrize(
|
||||
"query,docs_before_texts,expected_first_text",
|
||||
[
|
||||
("City in Bosnia and Herzegovina", ["Berlin", "Belgrade", "Sarajevo"], "Sarajevo"),
|
||||
("Machine learning", ["Python", "Bakery in Paris", "Tesla Giga Berlin"], "Python"),
|
||||
("Cubist movement", ["Nirvana", "Pablo Picasso", "Coffee"], "Pablo Picasso"),
|
||||
],
|
||||
)
|
||||
def test_run(self, query, docs_before_texts, expected_first_text):
|
||||
"""
|
||||
Test if the component ranks documents correctly.
|
||||
"""
|
||||
ranker = SimilarityRanker(model_name_or_path="cross-encoder/ms-marco-MiniLM-L-6-v2")
|
||||
ranker.warm_up()
|
||||
docs_before = [Document(text=text) for text in docs_before_texts]
|
||||
output = ranker.run(query=query, documents=docs_before)
|
||||
docs_after = output["documents"]
|
||||
|
||||
assert len(docs_after) == 3
|
||||
assert docs_after[0].text == expected_first_text
|
||||
|
||||
sorted_scores = sorted([doc.score for doc in docs_after], reverse=True)
|
||||
assert [doc.score for doc in docs_after] == sorted_scores
|
||||
|
||||
# Returns an empty list if no documents are provided
|
||||
@pytest.mark.integration
|
||||
def test_returns_empty_list_if_no_documents_are_provided(self):
|
||||
sampler = SimilarityRanker()
|
||||
sampler.warm_up()
|
||||
output = sampler.run(query="City in Germany", documents=[])
|
||||
assert output["documents"] == []
|
||||
|
||||
# Raises ComponentError if model is not warmed up
|
||||
@pytest.mark.integration
|
||||
def test_raises_component_error_if_model_not_warmed_up(self):
|
||||
sampler = SimilarityRanker()
|
||||
|
||||
with pytest.raises(ComponentError):
|
||||
sampler.run(query="query", documents=[Document(text="document")])
|
||||
Loading…
x
Reference in New Issue
Block a user