mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-11-02 10:49:30 +00:00
refactor: Rename FaithfulnessEvaluator input responses to predicted_answers (#7621)
This commit is contained in:
parent
5de5619abd
commit
2509eeea7e
@ -113,7 +113,7 @@ class ContextRelevanceEvaluator(LLMEvaluator):
|
||||
api_key=self.api_key,
|
||||
)
|
||||
|
||||
@component.output_types(results=List[Dict[str, Any]])
|
||||
@component.output_types(individual_scores=List[int], score=float, results=List[Dict[str, Any]])
|
||||
def run(self, questions: List[str], contexts: List[List[str]]) -> Dict[str, Any]:
|
||||
"""
|
||||
Run the LLM evaluator.
|
||||
|
||||
@ -13,7 +13,7 @@ _DEFAULT_EXAMPLES = [
|
||||
"inputs": {
|
||||
"questions": "What is the capital of Germany and when was it founded?",
|
||||
"contexts": ["Berlin is the capital of Germany and was founded in 1244."],
|
||||
"responses": "The capital of Germany, Berlin, was founded in the 13th century.",
|
||||
"predicted_answers": "The capital of Germany, Berlin, was founded in the 13th century.",
|
||||
},
|
||||
"outputs": {
|
||||
"statements": ["Berlin is the capital of Germany.", "Berlin was founded in 1244."],
|
||||
@ -24,7 +24,7 @@ _DEFAULT_EXAMPLES = [
|
||||
"inputs": {
|
||||
"questions": "What is the capital of France?",
|
||||
"contexts": ["Berlin is the capital of Germany."],
|
||||
"responses": "Paris",
|
||||
"predicted_answers": "Paris",
|
||||
},
|
||||
"outputs": {"statements": ["Paris is the capital of France."], "statement_scores": [0]},
|
||||
},
|
||||
@ -32,7 +32,7 @@ _DEFAULT_EXAMPLES = [
|
||||
"inputs": {
|
||||
"questions": "What is the capital of Italy?",
|
||||
"contexts": ["Rome is the capital of Italy."],
|
||||
"responses": "Rome is the capital of Italy with more than 4 million inhabitants.",
|
||||
"predicted_answers": "Rome is the capital of Italy with more than 4 million inhabitants.",
|
||||
},
|
||||
"outputs": {
|
||||
"statements": ["Rome is the capital of Italy.", "Rome has more than 4 million inhabitants."],
|
||||
@ -60,9 +60,9 @@ class FaithfulnessEvaluator(LLMEvaluator):
|
||||
"Python, created by Guido van Rossum in the late 1980s, is a high-level general-purpose programming language. Its design philosophy emphasizes code readability, and its language constructs aim to help programmers write clear, logical code for both small and large-scale software projects."
|
||||
],
|
||||
]
|
||||
responses = ["Python is a high-level general-purpose programming language that was created by George Lucas."]
|
||||
predicted_answers = ["Python is a high-level general-purpose programming language that was created by George Lucas."]
|
||||
evaluator = FaithfulnessEvaluator()
|
||||
result = evaluator.run(questions=questions, contexts=contexts, responses=responses)
|
||||
result = evaluator.run(questions=questions, contexts=contexts, predicted_answers=predicted_answers)
|
||||
|
||||
print(result["individual_scores"])
|
||||
# [0.5]
|
||||
@ -87,13 +87,13 @@ class FaithfulnessEvaluator(LLMEvaluator):
|
||||
Optional few-shot examples conforming to the expected input and output format of FaithfulnessEvaluator.
|
||||
Default examples will be used if none are provided.
|
||||
Each example must be a dictionary with keys "inputs" and "outputs".
|
||||
"inputs" must be a dictionary with keys "questions", "contexts", and "responses".
|
||||
"inputs" must be a dictionary with keys "questions", "contexts", and "predicted_answers".
|
||||
"outputs" must be a dictionary with "statements" and "statement_scores".
|
||||
Expected format:
|
||||
[{
|
||||
"inputs": {
|
||||
"questions": "What is the capital of Italy?", "contexts": ["Rome is the capital of Italy."],
|
||||
"responses": "Rome is the capital of Italy with more than 4 million inhabitants.",
|
||||
"predicted_answers": "Rome is the capital of Italy with more than 4 million inhabitants.",
|
||||
},
|
||||
"outputs": {
|
||||
"statements": ["Rome is the capital of Italy.", "Rome has more than 4 million inhabitants."],
|
||||
@ -110,11 +110,11 @@ class FaithfulnessEvaluator(LLMEvaluator):
|
||||
self.instructions = (
|
||||
"Your task is to judge the faithfulness or groundedness of statements based "
|
||||
"on context information. First, please extract statements from a provided "
|
||||
"response to a question. Second, calculate a faithfulness score for each "
|
||||
"statement made in the response. The score is 1 if the statement can be "
|
||||
"predicted answer to a question. Second, calculate a faithfulness score for each "
|
||||
"statement made in the predicted answer. The score is 1 if the statement can be "
|
||||
"inferred from the provided context or 0 if it cannot be inferred."
|
||||
)
|
||||
self.inputs = [("questions", List[str]), ("contexts", List[List[str]]), ("responses", List[str])]
|
||||
self.inputs = [("questions", List[str]), ("contexts", List[List[str]]), ("predicted_answers", List[str])]
|
||||
self.outputs = ["statements", "statement_scores"]
|
||||
self.examples = examples or _DEFAULT_EXAMPLES
|
||||
self.api = api
|
||||
@ -129,8 +129,8 @@ class FaithfulnessEvaluator(LLMEvaluator):
|
||||
api_key=self.api_key,
|
||||
)
|
||||
|
||||
@component.output_types(results=List[Dict[str, Any]])
|
||||
def run(self, questions: List[str], contexts: List[List[str]], responses: List[str]) -> Dict[str, Any]:
|
||||
@component.output_types(individual_scores=List[int], score=float, results=List[Dict[str, Any]])
|
||||
def run(self, questions: List[str], contexts: List[List[str]], predicted_answers: List[str]) -> Dict[str, Any]:
|
||||
"""
|
||||
Run the LLM evaluator.
|
||||
|
||||
@ -138,15 +138,15 @@ class FaithfulnessEvaluator(LLMEvaluator):
|
||||
A list of questions.
|
||||
:param contexts:
|
||||
A nested list of contexts that correspond to the questions.
|
||||
:param responses:
|
||||
A list of responses.
|
||||
:param predicted_answers:
|
||||
A list of predicted answers.
|
||||
:returns:
|
||||
A dictionary with the following outputs:
|
||||
- `score`: Mean faithfulness score over all the provided input answers.
|
||||
- `individual_scores`: A list of faithfulness scores for each input answer.
|
||||
- `results`: A list of dictionaries with `statements` and `statement_scores` for each input answer.
|
||||
"""
|
||||
result = super().run(questions=questions, contexts=contexts, responses=responses)
|
||||
result = super().run(questions=questions, contexts=contexts, predicted_answers=predicted_answers)
|
||||
|
||||
# calculate average statement faithfulness score per query
|
||||
for res in result["results"]:
|
||||
|
||||
@ -23,18 +23,18 @@ class LLMEvaluator:
|
||||
from haystack.components.evaluators import LLMEvaluator
|
||||
evaluator = LLMEvaluator(
|
||||
instructions="Is this answer problematic for children?",
|
||||
inputs=[("responses", List[str])],
|
||||
inputs=[("predicted_answers", List[str])],
|
||||
outputs=["score"],
|
||||
examples=[
|
||||
{"inputs": {"responses": "Damn, this is straight outta hell!!!"}, "outputs": {"score": 1}},
|
||||
{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}},
|
||||
{"inputs": {"predicted_answers": "Damn, this is straight outta hell!!!"}, "outputs": {"score": 1}},
|
||||
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}},
|
||||
],
|
||||
)
|
||||
RESPONSES = [
|
||||
predicted_answers = [
|
||||
"Football is the most popular sport with around 4 billion followers worldwide",
|
||||
"Python language was created by Guido van Rossum.",
|
||||
]
|
||||
results = evaluator.run(responses=RESPONSES)
|
||||
results = evaluator.run(predicted_answers=predicted_answers)
|
||||
print(results)
|
||||
# {'results': [{'score': 0}, {'score': 0}]}
|
||||
```
|
||||
@ -199,7 +199,7 @@ class LLMEvaluator:
|
||||
The prompt template.
|
||||
"""
|
||||
inputs_section = (
|
||||
"{" + ",".join([f'"{input_socket[0]}": {{{{ {input_socket[0]} }}}}' for input_socket in self.inputs]) + "}"
|
||||
"{" + ", ".join([f'"{input_socket[0]}": {{{{ {input_socket[0]} }}}}' for input_socket in self.inputs]) + "}"
|
||||
)
|
||||
|
||||
examples_section = "\n".join(
|
||||
|
||||
@ -183,7 +183,7 @@ class SASEvaluator:
|
||||
|
||||
# Compute cosine-similarities
|
||||
similarity_scores = [
|
||||
util.cos_sim(p, l).cpu().numpy() for p, l in zip(predictions_embeddings, label_embeddings)
|
||||
float(util.cos_sim(p, l).cpu().numpy()) for p, l in zip(predictions_embeddings, label_embeddings)
|
||||
]
|
||||
|
||||
sas_score = np_mean(similarity_scores)
|
||||
|
||||
@ -15,19 +15,23 @@ class TestFaithfulnessEvaluator:
|
||||
assert component.generator.client.api_key == "test-api-key"
|
||||
assert component.instructions == (
|
||||
"Your task is to judge the faithfulness or groundedness of statements based "
|
||||
"on context information. First, please extract statements from a provided "
|
||||
"response to a question. Second, calculate a faithfulness score for each "
|
||||
"statement made in the response. The score is 1 if the statement can be "
|
||||
"on context information. First, please extract statements from a provided predicted "
|
||||
"answer to a question. Second, calculate a faithfulness score for each "
|
||||
"statement made in the predicted answer. The score is 1 if the statement can be "
|
||||
"inferred from the provided context or 0 if it cannot be inferred."
|
||||
)
|
||||
assert component.inputs == [("questions", List[str]), ("contexts", List[List[str]]), ("responses", List[str])]
|
||||
assert component.inputs == [
|
||||
("questions", List[str]),
|
||||
("contexts", List[List[str]]),
|
||||
("predicted_answers", List[str]),
|
||||
]
|
||||
assert component.outputs == ["statements", "statement_scores"]
|
||||
assert component.examples == [
|
||||
{
|
||||
"inputs": {
|
||||
"questions": "What is the capital of Germany and when was it founded?",
|
||||
"contexts": ["Berlin is the capital of Germany and was founded in 1244."],
|
||||
"responses": "The capital of Germany, Berlin, was founded in the 13th century.",
|
||||
"predicted_answers": "The capital of Germany, Berlin, was founded in the 13th century.",
|
||||
},
|
||||
"outputs": {
|
||||
"statements": ["Berlin is the capital of Germany.", "Berlin was founded in 1244."],
|
||||
@ -38,7 +42,7 @@ class TestFaithfulnessEvaluator:
|
||||
"inputs": {
|
||||
"questions": "What is the capital of France?",
|
||||
"contexts": ["Berlin is the capital of Germany."],
|
||||
"responses": "Paris",
|
||||
"predicted_answers": "Paris",
|
||||
},
|
||||
"outputs": {"statements": ["Paris is the capital of France."], "statement_scores": [0]},
|
||||
},
|
||||
@ -46,7 +50,7 @@ class TestFaithfulnessEvaluator:
|
||||
"inputs": {
|
||||
"questions": "What is the capital of Italy?",
|
||||
"contexts": ["Rome is the capital of Italy."],
|
||||
"responses": "Rome is the capital of Italy with more than 4 million inhabitants.",
|
||||
"predicted_answers": "Rome is the capital of Italy with more than 4 million inhabitants.",
|
||||
},
|
||||
"outputs": {
|
||||
"statements": ["Rome is the capital of Italy.", "Rome has more than 4 million inhabitants."],
|
||||
@ -65,15 +69,21 @@ class TestFaithfulnessEvaluator:
|
||||
api_key=Secret.from_token("test-api-key"),
|
||||
api="openai",
|
||||
examples=[
|
||||
{"inputs": {"responses": "Damn, this is straight outta hell!!!"}, "outputs": {"custom_score": 1}},
|
||||
{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"custom_score": 0}},
|
||||
{
|
||||
"inputs": {"predicted_answers": "Damn, this is straight outta hell!!!"},
|
||||
"outputs": {"custom_score": 1},
|
||||
},
|
||||
{
|
||||
"inputs": {"predicted_answers": "Football is the most popular sport."},
|
||||
"outputs": {"custom_score": 0},
|
||||
},
|
||||
],
|
||||
)
|
||||
assert component.generator.client.api_key == "test-api-key"
|
||||
assert component.api == "openai"
|
||||
assert component.examples == [
|
||||
{"inputs": {"responses": "Damn, this is straight outta hell!!!"}, "outputs": {"custom_score": 1}},
|
||||
{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"custom_score": 0}},
|
||||
{"inputs": {"predicted_answers": "Damn, this is straight outta hell!!!"}, "outputs": {"custom_score": 1}},
|
||||
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"custom_score": 0}},
|
||||
]
|
||||
|
||||
def test_from_dict(self, monkeypatch):
|
||||
@ -84,14 +94,16 @@ class TestFaithfulnessEvaluator:
|
||||
"init_parameters": {
|
||||
"api_key": {"env_vars": ["OPENAI_API_KEY"], "strict": True, "type": "env_var"},
|
||||
"api": "openai",
|
||||
"examples": [{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
|
||||
"examples": [
|
||||
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
||||
],
|
||||
},
|
||||
}
|
||||
component = FaithfulnessEvaluator.from_dict(data)
|
||||
assert component.api == "openai"
|
||||
assert component.generator.client.api_key == "test-api-key"
|
||||
assert component.examples == [
|
||||
{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
||||
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
||||
]
|
||||
|
||||
def test_run_calculates_mean_score(self, monkeypatch):
|
||||
@ -120,11 +132,11 @@ class TestFaithfulnessEvaluator:
|
||||
"programmers write clear, logical code for both small and large-scale software projects."
|
||||
],
|
||||
]
|
||||
responses = [
|
||||
predicted_answers = [
|
||||
"Football is the most popular sport with around 4 billion followers worldwide.",
|
||||
"Python is a high-level general-purpose programming language that was created by George Lucas.",
|
||||
]
|
||||
results = component.run(questions=questions, contexts=contexts, responses=responses)
|
||||
results = component.run(questions=questions, contexts=contexts, predicted_answers=predicted_answers)
|
||||
assert results == {
|
||||
"individual_scores": [0.5, 1],
|
||||
"results": [
|
||||
@ -148,9 +160,9 @@ class TestFaithfulnessEvaluator:
|
||||
def test_live_run(self):
|
||||
questions = ["What is Python and who created it?"]
|
||||
contexts = [["Python is a programming language created by Guido van Rossum."]]
|
||||
responses = ["Python is a programming language created by George Lucas."]
|
||||
predicted_answers = ["Python is a programming language created by George Lucas."]
|
||||
evaluator = FaithfulnessEvaluator()
|
||||
result = evaluator.run(questions=questions, contexts=contexts, responses=responses)
|
||||
result = evaluator.run(questions=questions, contexts=contexts, predicted_answers=predicted_answers)
|
||||
|
||||
required_fields = {"individual_scores", "results", "score"}
|
||||
assert all(field in result for field in required_fields)
|
||||
|
||||
@ -11,17 +11,19 @@ class TestLLMEvaluator:
|
||||
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
|
||||
component = LLMEvaluator(
|
||||
instructions="test-instruction",
|
||||
inputs=[("responses", List[str])],
|
||||
inputs=[("predicted_answers", List[str])],
|
||||
outputs=["score"],
|
||||
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
|
||||
examples=[
|
||||
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
||||
],
|
||||
)
|
||||
assert component.api == "openai"
|
||||
assert component.generator.client.api_key == "test-api-key"
|
||||
assert component.instructions == "test-instruction"
|
||||
assert component.inputs == [("responses", List[str])]
|
||||
assert component.inputs == [("predicted_answers", List[str])]
|
||||
assert component.outputs == ["score"]
|
||||
assert component.examples == [
|
||||
{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
||||
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
||||
]
|
||||
|
||||
def test_init_fail_wo_openai_api_key(self, monkeypatch):
|
||||
@ -30,31 +32,39 @@ class TestLLMEvaluator:
|
||||
LLMEvaluator(
|
||||
api="openai",
|
||||
instructions="test-instruction",
|
||||
inputs=[("responses", List[str])],
|
||||
inputs=[("predicted_answers", List[str])],
|
||||
outputs=["score"],
|
||||
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
|
||||
examples=[
|
||||
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
||||
],
|
||||
)
|
||||
|
||||
def test_init_with_parameters(self):
|
||||
component = LLMEvaluator(
|
||||
instructions="test-instruction",
|
||||
api_key=Secret.from_token("test-api-key"),
|
||||
inputs=[("responses", List[str])],
|
||||
inputs=[("predicted_answers", List[str])],
|
||||
outputs=["custom_score"],
|
||||
api="openai",
|
||||
examples=[
|
||||
{"inputs": {"responses": "Damn, this is straight outta hell!!!"}, "outputs": {"custom_score": 1}},
|
||||
{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"custom_score": 0}},
|
||||
{
|
||||
"inputs": {"predicted_answers": "Damn, this is straight outta hell!!!"},
|
||||
"outputs": {"custom_score": 1},
|
||||
},
|
||||
{
|
||||
"inputs": {"predicted_answers": "Football is the most popular sport."},
|
||||
"outputs": {"custom_score": 0},
|
||||
},
|
||||
],
|
||||
)
|
||||
assert component.generator.client.api_key == "test-api-key"
|
||||
assert component.api == "openai"
|
||||
assert component.examples == [
|
||||
{"inputs": {"responses": "Damn, this is straight outta hell!!!"}, "outputs": {"custom_score": 1}},
|
||||
{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"custom_score": 0}},
|
||||
{"inputs": {"predicted_answers": "Damn, this is straight outta hell!!!"}, "outputs": {"custom_score": 1}},
|
||||
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"custom_score": 0}},
|
||||
]
|
||||
assert component.instructions == "test-instruction"
|
||||
assert component.inputs == [("responses", List[str])]
|
||||
assert component.inputs == [("predicted_answers", List[str])]
|
||||
assert component.outputs == ["custom_score"]
|
||||
|
||||
def test_init_with_invalid_parameters(self, monkeypatch):
|
||||
@ -63,85 +73,105 @@ class TestLLMEvaluator:
|
||||
with pytest.raises(ValueError):
|
||||
LLMEvaluator(
|
||||
instructions="test-instruction",
|
||||
inputs={("responses", List[str])},
|
||||
inputs={("predicted_answers", List[str])},
|
||||
outputs=["score"],
|
||||
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
|
||||
examples=[
|
||||
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
||||
],
|
||||
)
|
||||
with pytest.raises(ValueError):
|
||||
LLMEvaluator(
|
||||
instructions="test-instruction",
|
||||
inputs=[(List[str], "responses")],
|
||||
inputs=[(List[str], "predicted_answers")],
|
||||
outputs=["score"],
|
||||
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
|
||||
examples=[
|
||||
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
||||
],
|
||||
)
|
||||
with pytest.raises(ValueError):
|
||||
LLMEvaluator(
|
||||
instructions="test-instruction",
|
||||
inputs=[List[str]],
|
||||
outputs=["score"],
|
||||
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
|
||||
examples=[
|
||||
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
||||
],
|
||||
)
|
||||
with pytest.raises(ValueError):
|
||||
LLMEvaluator(
|
||||
instructions="test-instruction",
|
||||
inputs={("responses", str)},
|
||||
inputs={("predicted_answers", str)},
|
||||
outputs=["score"],
|
||||
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
|
||||
examples=[
|
||||
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
||||
],
|
||||
)
|
||||
|
||||
# Invalid outputs
|
||||
with pytest.raises(ValueError):
|
||||
LLMEvaluator(
|
||||
instructions="test-instruction",
|
||||
inputs=[("responses", List[str])],
|
||||
inputs=[("predicted_answers", List[str])],
|
||||
outputs="score",
|
||||
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
|
||||
examples=[
|
||||
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
||||
],
|
||||
)
|
||||
with pytest.raises(ValueError):
|
||||
LLMEvaluator(
|
||||
instructions="test-instruction",
|
||||
inputs=[("responses", List[str])],
|
||||
inputs=[("predicted_answers", List[str])],
|
||||
outputs=[["score"]],
|
||||
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
|
||||
examples=[
|
||||
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
||||
],
|
||||
)
|
||||
|
||||
# Invalid examples
|
||||
with pytest.raises(ValueError):
|
||||
LLMEvaluator(
|
||||
instructions="test-instruction",
|
||||
inputs=[("responses", List[str])],
|
||||
inputs=[("predicted_answers", List[str])],
|
||||
outputs=["score"],
|
||||
examples={
|
||||
"inputs": {"responses": "Damn, this is straight outta hell!!!"},
|
||||
"inputs": {"predicted_answers": "Damn, this is straight outta hell!!!"},
|
||||
"outputs": {"custom_score": 1},
|
||||
},
|
||||
)
|
||||
with pytest.raises(ValueError):
|
||||
LLMEvaluator(
|
||||
instructions="test-instruction",
|
||||
inputs=[("responses", List[str])],
|
||||
inputs=[("predicted_answers", List[str])],
|
||||
outputs=["score"],
|
||||
examples=[
|
||||
[{"inputs": {"responses": "Damn, this is straight outta hell!!!"}, "outputs": {"custom_score": 1}}]
|
||||
[
|
||||
{
|
||||
"inputs": {"predicted_answers": "Damn, this is straight outta hell!!!"},
|
||||
"outputs": {"custom_score": 1},
|
||||
}
|
||||
]
|
||||
],
|
||||
)
|
||||
with pytest.raises(ValueError):
|
||||
LLMEvaluator(
|
||||
instructions="test-instruction",
|
||||
inputs=[("responses", List[str])],
|
||||
outputs=["score"],
|
||||
examples=[
|
||||
{"wrong_key": {"responses": "Damn, this is straight outta hell!!!"}, "outputs": {"custom_score": 1}}
|
||||
],
|
||||
)
|
||||
with pytest.raises(ValueError):
|
||||
LLMEvaluator(
|
||||
instructions="test-instruction",
|
||||
inputs=[("responses", List[str])],
|
||||
inputs=[("predicted_answers", List[str])],
|
||||
outputs=["score"],
|
||||
examples=[
|
||||
{
|
||||
"inputs": [{"responses": "Damn, this is straight outta hell!!!"}],
|
||||
"wrong_key": {"predicted_answers": "Damn, this is straight outta hell!!!"},
|
||||
"outputs": {"custom_score": 1},
|
||||
}
|
||||
],
|
||||
)
|
||||
with pytest.raises(ValueError):
|
||||
LLMEvaluator(
|
||||
instructions="test-instruction",
|
||||
inputs=[("predicted_answers", List[str])],
|
||||
outputs=["score"],
|
||||
examples=[
|
||||
{
|
||||
"inputs": [{"predicted_answers": "Damn, this is straight outta hell!!!"}],
|
||||
"outputs": [{"custom_score": 1}],
|
||||
}
|
||||
],
|
||||
@ -149,7 +179,7 @@ class TestLLMEvaluator:
|
||||
with pytest.raises(ValueError):
|
||||
LLMEvaluator(
|
||||
instructions="test-instruction",
|
||||
inputs=[("responses", List[str])],
|
||||
inputs=[("predicted_answers", List[str])],
|
||||
outputs=["score"],
|
||||
examples=[{"inputs": {1: "Damn, this is straight outta hell!!!"}, "outputs": {2: 1}}],
|
||||
)
|
||||
@ -158,9 +188,11 @@ class TestLLMEvaluator:
|
||||
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
|
||||
component = LLMEvaluator(
|
||||
instructions="test-instruction",
|
||||
inputs=[("responses", List[str])],
|
||||
inputs=[("predicted_answers", List[str])],
|
||||
outputs=["score"],
|
||||
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
|
||||
examples=[
|
||||
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
||||
],
|
||||
)
|
||||
data = component.to_dict()
|
||||
assert data == {
|
||||
@ -169,9 +201,11 @@ class TestLLMEvaluator:
|
||||
"api_key": {"env_vars": ["OPENAI_API_KEY"], "strict": True, "type": "env_var"},
|
||||
"api": "openai",
|
||||
"instructions": "test-instruction",
|
||||
"inputs": [("responses", List[str])],
|
||||
"inputs": [("predicted_answers", List[str])],
|
||||
"outputs": ["score"],
|
||||
"examples": [{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
|
||||
"examples": [
|
||||
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
||||
],
|
||||
},
|
||||
}
|
||||
|
||||
@ -184,19 +218,21 @@ class TestLLMEvaluator:
|
||||
"api_key": {"env_vars": ["OPENAI_API_KEY"], "strict": True, "type": "env_var"},
|
||||
"api": "openai",
|
||||
"instructions": "test-instruction",
|
||||
"inputs": [("responses", List[str])],
|
||||
"inputs": [("predicted_answers", List[str])],
|
||||
"outputs": ["score"],
|
||||
"examples": [{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
|
||||
"examples": [
|
||||
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
||||
],
|
||||
},
|
||||
}
|
||||
component = LLMEvaluator.from_dict(data)
|
||||
assert component.api == "openai"
|
||||
assert component.generator.client.api_key == "test-api-key"
|
||||
assert component.instructions == "test-instruction"
|
||||
assert component.inputs == [("responses", List[str])]
|
||||
assert component.inputs == [("predicted_answers", List[str])]
|
||||
assert component.outputs == ["score"]
|
||||
assert component.examples == [
|
||||
{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
||||
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
||||
]
|
||||
|
||||
def test_to_dict_with_parameters(self, monkeypatch):
|
||||
@ -204,12 +240,18 @@ class TestLLMEvaluator:
|
||||
component = LLMEvaluator(
|
||||
instructions="test-instruction",
|
||||
api_key=Secret.from_env_var("ENV_VAR"),
|
||||
inputs=[("responses", List[str])],
|
||||
inputs=[("predicted_answers", List[str])],
|
||||
outputs=["custom_score"],
|
||||
api="openai",
|
||||
examples=[
|
||||
{"inputs": {"responses": "Damn, this is straight outta hell!!!"}, "outputs": {"custom_score": 1}},
|
||||
{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"custom_score": 0}},
|
||||
{
|
||||
"inputs": {"predicted_answers": "Damn, this is straight outta hell!!!"},
|
||||
"outputs": {"custom_score": 1},
|
||||
},
|
||||
{
|
||||
"inputs": {"predicted_answers": "Football is the most popular sport."},
|
||||
"outputs": {"custom_score": 0},
|
||||
},
|
||||
],
|
||||
)
|
||||
data = component.to_dict()
|
||||
@ -219,11 +261,17 @@ class TestLLMEvaluator:
|
||||
"api_key": {"env_vars": ["ENV_VAR"], "strict": True, "type": "env_var"},
|
||||
"api": "openai",
|
||||
"instructions": "test-instruction",
|
||||
"inputs": [("responses", List[str])],
|
||||
"inputs": [("predicted_answers", List[str])],
|
||||
"outputs": ["custom_score"],
|
||||
"examples": [
|
||||
{"inputs": {"responses": "Damn, this is straight outta hell!!!"}, "outputs": {"custom_score": 1}},
|
||||
{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"custom_score": 0}},
|
||||
{
|
||||
"inputs": {"predicted_answers": "Damn, this is straight outta hell!!!"},
|
||||
"outputs": {"custom_score": 1},
|
||||
},
|
||||
{
|
||||
"inputs": {"predicted_answers": "Football is the most popular sport."},
|
||||
"outputs": {"custom_score": 0},
|
||||
},
|
||||
],
|
||||
},
|
||||
}
|
||||
@ -232,9 +280,11 @@ class TestLLMEvaluator:
|
||||
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
|
||||
component = LLMEvaluator(
|
||||
instructions="test-instruction",
|
||||
inputs=[("questions", List[str]), ("responses", List[List[str]])],
|
||||
inputs=[("questions", List[str]), ("predicted_answers", List[List[str]])],
|
||||
outputs=["score"],
|
||||
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
|
||||
examples=[
|
||||
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
||||
],
|
||||
)
|
||||
|
||||
def generator_run(self, *args, **kwargs):
|
||||
@ -243,20 +293,23 @@ class TestLLMEvaluator:
|
||||
monkeypatch.setattr("haystack.components.generators.openai.OpenAIGenerator.run", generator_run)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
component.run(questions=["What is the capital of Germany?"], responses=[["Berlin"], ["Paris"]])
|
||||
component.run(questions=["What is the capital of Germany?"], predicted_answers=[["Berlin"], ["Paris"]])
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
component.run(
|
||||
questions=["What is the capital of Germany?", "What is the capital of France?"], responses=[["Berlin"]]
|
||||
questions=["What is the capital of Germany?", "What is the capital of France?"],
|
||||
predicted_answers=[["Berlin"]],
|
||||
)
|
||||
|
||||
def test_run_returns_parsed_result(self, monkeypatch):
|
||||
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
|
||||
component = LLMEvaluator(
|
||||
instructions="test-instruction",
|
||||
inputs=[("questions", List[str]), ("responses", List[List[str]])],
|
||||
inputs=[("questions", List[str]), ("predicted_answers", List[List[str]])],
|
||||
outputs=["score"],
|
||||
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
|
||||
examples=[
|
||||
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
||||
],
|
||||
)
|
||||
|
||||
def generator_run(self, *args, **kwargs):
|
||||
@ -264,42 +317,46 @@ class TestLLMEvaluator:
|
||||
|
||||
monkeypatch.setattr("haystack.components.generators.openai.OpenAIGenerator.run", generator_run)
|
||||
|
||||
results = component.run(questions=["What is the capital of Germany?"], responses=["Berlin"])
|
||||
results = component.run(questions=["What is the capital of Germany?"], predicted_answers=["Berlin"])
|
||||
assert results == {"results": [{"score": 0.5}]}
|
||||
|
||||
def test_prepare_template(self, monkeypatch):
|
||||
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
|
||||
component = LLMEvaluator(
|
||||
instructions="test-instruction",
|
||||
inputs=[("responses", List[str])],
|
||||
inputs=[("predicted_answers", List[str])],
|
||||
outputs=["score"],
|
||||
examples=[
|
||||
{"inputs": {"responses": "Damn, this is straight outta hell!!!"}, "outputs": {"score": 1}},
|
||||
{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}},
|
||||
{"inputs": {"predicted_answers": "Damn, this is straight outta hell!!!"}, "outputs": {"score": 1}},
|
||||
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}},
|
||||
],
|
||||
)
|
||||
template = component.prepare_template()
|
||||
assert (
|
||||
template
|
||||
== 'Instructions:\ntest-instruction\n\nGenerate the response in JSON format with the following keys:\n["score"]\nConsider the instructions and the examples below to determine those values.\n\nExamples:\nInputs:\n{"responses": "Damn, this is straight outta hell!!!"}\nOutputs:\n{"score": 1}\nInputs:\n{"responses": "Football is the most popular sport."}\nOutputs:\n{"score": 0}\n\nInputs:\n{"responses": {{ responses }}}\nOutputs:\n'
|
||||
== 'Instructions:\ntest-instruction\n\nGenerate the response in JSON format with the following keys:\n["score"]\nConsider the instructions and the examples below to determine those values.\n\nExamples:\nInputs:\n{"predicted_answers": "Damn, this is straight outta hell!!!"}\nOutputs:\n{"score": 1}\nInputs:\n{"predicted_answers": "Football is the most popular sport."}\nOutputs:\n{"score": 0}\n\nInputs:\n{"predicted_answers": {{ predicted_answers }}}\nOutputs:\n'
|
||||
)
|
||||
|
||||
def test_invalid_input_parameters(self, monkeypatch):
|
||||
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
|
||||
component = LLMEvaluator(
|
||||
instructions="test-instruction",
|
||||
inputs=[("responses", List[str])],
|
||||
inputs=[("predicted_answers", List[str])],
|
||||
outputs=["score"],
|
||||
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
|
||||
examples=[
|
||||
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
||||
],
|
||||
)
|
||||
# None of the expected parameters are received
|
||||
with pytest.raises(ValueError):
|
||||
component.validate_input_parameters(expected={"responses": List[str]}, received={"questions": List[str]})
|
||||
component.validate_input_parameters(
|
||||
expected={"predicted_answers": List[str]}, received={"questions": List[str]}
|
||||
)
|
||||
|
||||
# Only one but not all the expected parameters are received
|
||||
with pytest.raises(ValueError):
|
||||
component.validate_input_parameters(
|
||||
expected={"responses": List[str], "questions": List[str]}, received={"questions": List[str]}
|
||||
expected={"predicted_answers": List[str], "questions": List[str]}, received={"questions": List[str]}
|
||||
)
|
||||
|
||||
# Received inputs are not lists
|
||||
@ -310,9 +367,11 @@ class TestLLMEvaluator:
|
||||
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
|
||||
component = LLMEvaluator(
|
||||
instructions="test-instruction",
|
||||
inputs=[("responses", List[str])],
|
||||
inputs=[("predicted_answers", List[str])],
|
||||
outputs=["score"],
|
||||
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
|
||||
examples=[
|
||||
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
||||
],
|
||||
)
|
||||
with pytest.raises(ValueError):
|
||||
component.validate_outputs(expected=["score", "another_expected_output"], received='{"score": 1.0}')
|
||||
@ -325,7 +384,9 @@ class TestLLMEvaluator:
|
||||
LLMEvaluator(
|
||||
api="unsupported_api",
|
||||
instructions="test-instruction",
|
||||
inputs=[("responses", List[str])],
|
||||
inputs=[("predicted_answers", List[str])],
|
||||
outputs=["score"],
|
||||
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
|
||||
examples=[
|
||||
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
||||
],
|
||||
)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user