refactor: Rename FaithfulnessEvaluator input responses to predicted_answers (#7621)

This commit is contained in:
Julian Risch 2024-04-30 16:30:57 +02:00 committed by GitHub
parent 5de5619abd
commit 2509eeea7e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 185 additions and 112 deletions

View File

@ -113,7 +113,7 @@ class ContextRelevanceEvaluator(LLMEvaluator):
api_key=self.api_key,
)
@component.output_types(results=List[Dict[str, Any]])
@component.output_types(individual_scores=List[int], score=float, results=List[Dict[str, Any]])
def run(self, questions: List[str], contexts: List[List[str]]) -> Dict[str, Any]:
"""
Run the LLM evaluator.

View File

@ -13,7 +13,7 @@ _DEFAULT_EXAMPLES = [
"inputs": {
"questions": "What is the capital of Germany and when was it founded?",
"contexts": ["Berlin is the capital of Germany and was founded in 1244."],
"responses": "The capital of Germany, Berlin, was founded in the 13th century.",
"predicted_answers": "The capital of Germany, Berlin, was founded in the 13th century.",
},
"outputs": {
"statements": ["Berlin is the capital of Germany.", "Berlin was founded in 1244."],
@ -24,7 +24,7 @@ _DEFAULT_EXAMPLES = [
"inputs": {
"questions": "What is the capital of France?",
"contexts": ["Berlin is the capital of Germany."],
"responses": "Paris",
"predicted_answers": "Paris",
},
"outputs": {"statements": ["Paris is the capital of France."], "statement_scores": [0]},
},
@ -32,7 +32,7 @@ _DEFAULT_EXAMPLES = [
"inputs": {
"questions": "What is the capital of Italy?",
"contexts": ["Rome is the capital of Italy."],
"responses": "Rome is the capital of Italy with more than 4 million inhabitants.",
"predicted_answers": "Rome is the capital of Italy with more than 4 million inhabitants.",
},
"outputs": {
"statements": ["Rome is the capital of Italy.", "Rome has more than 4 million inhabitants."],
@ -60,9 +60,9 @@ class FaithfulnessEvaluator(LLMEvaluator):
"Python, created by Guido van Rossum in the late 1980s, is a high-level general-purpose programming language. Its design philosophy emphasizes code readability, and its language constructs aim to help programmers write clear, logical code for both small and large-scale software projects."
],
]
responses = ["Python is a high-level general-purpose programming language that was created by George Lucas."]
predicted_answers = ["Python is a high-level general-purpose programming language that was created by George Lucas."]
evaluator = FaithfulnessEvaluator()
result = evaluator.run(questions=questions, contexts=contexts, responses=responses)
result = evaluator.run(questions=questions, contexts=contexts, predicted_answers=predicted_answers)
print(result["individual_scores"])
# [0.5]
@ -87,13 +87,13 @@ class FaithfulnessEvaluator(LLMEvaluator):
Optional few-shot examples conforming to the expected input and output format of FaithfulnessEvaluator.
Default examples will be used if none are provided.
Each example must be a dictionary with keys "inputs" and "outputs".
"inputs" must be a dictionary with keys "questions", "contexts", and "responses".
"inputs" must be a dictionary with keys "questions", "contexts", and "predicted_answers".
"outputs" must be a dictionary with "statements" and "statement_scores".
Expected format:
[{
"inputs": {
"questions": "What is the capital of Italy?", "contexts": ["Rome is the capital of Italy."],
"responses": "Rome is the capital of Italy with more than 4 million inhabitants.",
"predicted_answers": "Rome is the capital of Italy with more than 4 million inhabitants.",
},
"outputs": {
"statements": ["Rome is the capital of Italy.", "Rome has more than 4 million inhabitants."],
@ -110,11 +110,11 @@ class FaithfulnessEvaluator(LLMEvaluator):
self.instructions = (
"Your task is to judge the faithfulness or groundedness of statements based "
"on context information. First, please extract statements from a provided "
"response to a question. Second, calculate a faithfulness score for each "
"statement made in the response. The score is 1 if the statement can be "
"predicted answer to a question. Second, calculate a faithfulness score for each "
"statement made in the predicted answer. The score is 1 if the statement can be "
"inferred from the provided context or 0 if it cannot be inferred."
)
self.inputs = [("questions", List[str]), ("contexts", List[List[str]]), ("responses", List[str])]
self.inputs = [("questions", List[str]), ("contexts", List[List[str]]), ("predicted_answers", List[str])]
self.outputs = ["statements", "statement_scores"]
self.examples = examples or _DEFAULT_EXAMPLES
self.api = api
@ -129,8 +129,8 @@ class FaithfulnessEvaluator(LLMEvaluator):
api_key=self.api_key,
)
@component.output_types(results=List[Dict[str, Any]])
def run(self, questions: List[str], contexts: List[List[str]], responses: List[str]) -> Dict[str, Any]:
@component.output_types(individual_scores=List[int], score=float, results=List[Dict[str, Any]])
def run(self, questions: List[str], contexts: List[List[str]], predicted_answers: List[str]) -> Dict[str, Any]:
"""
Run the LLM evaluator.
@ -138,15 +138,15 @@ class FaithfulnessEvaluator(LLMEvaluator):
A list of questions.
:param contexts:
A nested list of contexts that correspond to the questions.
:param responses:
A list of responses.
:param predicted_answers:
A list of predicted answers.
:returns:
A dictionary with the following outputs:
- `score`: Mean faithfulness score over all the provided input answers.
- `individual_scores`: A list of faithfulness scores for each input answer.
- `results`: A list of dictionaries with `statements` and `statement_scores` for each input answer.
"""
result = super().run(questions=questions, contexts=contexts, responses=responses)
result = super().run(questions=questions, contexts=contexts, predicted_answers=predicted_answers)
# calculate average statement faithfulness score per query
for res in result["results"]:

View File

@ -23,18 +23,18 @@ class LLMEvaluator:
from haystack.components.evaluators import LLMEvaluator
evaluator = LLMEvaluator(
instructions="Is this answer problematic for children?",
inputs=[("responses", List[str])],
inputs=[("predicted_answers", List[str])],
outputs=["score"],
examples=[
{"inputs": {"responses": "Damn, this is straight outta hell!!!"}, "outputs": {"score": 1}},
{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}},
{"inputs": {"predicted_answers": "Damn, this is straight outta hell!!!"}, "outputs": {"score": 1}},
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}},
],
)
RESPONSES = [
predicted_answers = [
"Football is the most popular sport with around 4 billion followers worldwide",
"Python language was created by Guido van Rossum.",
]
results = evaluator.run(responses=RESPONSES)
results = evaluator.run(predicted_answers=predicted_answers)
print(results)
# {'results': [{'score': 0}, {'score': 0}]}
```
@ -199,7 +199,7 @@ class LLMEvaluator:
The prompt template.
"""
inputs_section = (
"{" + ",".join([f'"{input_socket[0]}": {{{{ {input_socket[0]} }}}}' for input_socket in self.inputs]) + "}"
"{" + ", ".join([f'"{input_socket[0]}": {{{{ {input_socket[0]} }}}}' for input_socket in self.inputs]) + "}"
)
examples_section = "\n".join(

View File

@ -183,7 +183,7 @@ class SASEvaluator:
# Compute cosine-similarities
similarity_scores = [
util.cos_sim(p, l).cpu().numpy() for p, l in zip(predictions_embeddings, label_embeddings)
float(util.cos_sim(p, l).cpu().numpy()) for p, l in zip(predictions_embeddings, label_embeddings)
]
sas_score = np_mean(similarity_scores)

View File

@ -15,19 +15,23 @@ class TestFaithfulnessEvaluator:
assert component.generator.client.api_key == "test-api-key"
assert component.instructions == (
"Your task is to judge the faithfulness or groundedness of statements based "
"on context information. First, please extract statements from a provided "
"response to a question. Second, calculate a faithfulness score for each "
"statement made in the response. The score is 1 if the statement can be "
"on context information. First, please extract statements from a provided predicted "
"answer to a question. Second, calculate a faithfulness score for each "
"statement made in the predicted answer. The score is 1 if the statement can be "
"inferred from the provided context or 0 if it cannot be inferred."
)
assert component.inputs == [("questions", List[str]), ("contexts", List[List[str]]), ("responses", List[str])]
assert component.inputs == [
("questions", List[str]),
("contexts", List[List[str]]),
("predicted_answers", List[str]),
]
assert component.outputs == ["statements", "statement_scores"]
assert component.examples == [
{
"inputs": {
"questions": "What is the capital of Germany and when was it founded?",
"contexts": ["Berlin is the capital of Germany and was founded in 1244."],
"responses": "The capital of Germany, Berlin, was founded in the 13th century.",
"predicted_answers": "The capital of Germany, Berlin, was founded in the 13th century.",
},
"outputs": {
"statements": ["Berlin is the capital of Germany.", "Berlin was founded in 1244."],
@ -38,7 +42,7 @@ class TestFaithfulnessEvaluator:
"inputs": {
"questions": "What is the capital of France?",
"contexts": ["Berlin is the capital of Germany."],
"responses": "Paris",
"predicted_answers": "Paris",
},
"outputs": {"statements": ["Paris is the capital of France."], "statement_scores": [0]},
},
@ -46,7 +50,7 @@ class TestFaithfulnessEvaluator:
"inputs": {
"questions": "What is the capital of Italy?",
"contexts": ["Rome is the capital of Italy."],
"responses": "Rome is the capital of Italy with more than 4 million inhabitants.",
"predicted_answers": "Rome is the capital of Italy with more than 4 million inhabitants.",
},
"outputs": {
"statements": ["Rome is the capital of Italy.", "Rome has more than 4 million inhabitants."],
@ -65,15 +69,21 @@ class TestFaithfulnessEvaluator:
api_key=Secret.from_token("test-api-key"),
api="openai",
examples=[
{"inputs": {"responses": "Damn, this is straight outta hell!!!"}, "outputs": {"custom_score": 1}},
{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"custom_score": 0}},
{
"inputs": {"predicted_answers": "Damn, this is straight outta hell!!!"},
"outputs": {"custom_score": 1},
},
{
"inputs": {"predicted_answers": "Football is the most popular sport."},
"outputs": {"custom_score": 0},
},
],
)
assert component.generator.client.api_key == "test-api-key"
assert component.api == "openai"
assert component.examples == [
{"inputs": {"responses": "Damn, this is straight outta hell!!!"}, "outputs": {"custom_score": 1}},
{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"custom_score": 0}},
{"inputs": {"predicted_answers": "Damn, this is straight outta hell!!!"}, "outputs": {"custom_score": 1}},
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"custom_score": 0}},
]
def test_from_dict(self, monkeypatch):
@ -84,14 +94,16 @@ class TestFaithfulnessEvaluator:
"init_parameters": {
"api_key": {"env_vars": ["OPENAI_API_KEY"], "strict": True, "type": "env_var"},
"api": "openai",
"examples": [{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
"examples": [
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
],
},
}
component = FaithfulnessEvaluator.from_dict(data)
assert component.api == "openai"
assert component.generator.client.api_key == "test-api-key"
assert component.examples == [
{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
]
def test_run_calculates_mean_score(self, monkeypatch):
@ -120,11 +132,11 @@ class TestFaithfulnessEvaluator:
"programmers write clear, logical code for both small and large-scale software projects."
],
]
responses = [
predicted_answers = [
"Football is the most popular sport with around 4 billion followers worldwide.",
"Python is a high-level general-purpose programming language that was created by George Lucas.",
]
results = component.run(questions=questions, contexts=contexts, responses=responses)
results = component.run(questions=questions, contexts=contexts, predicted_answers=predicted_answers)
assert results == {
"individual_scores": [0.5, 1],
"results": [
@ -148,9 +160,9 @@ class TestFaithfulnessEvaluator:
def test_live_run(self):
questions = ["What is Python and who created it?"]
contexts = [["Python is a programming language created by Guido van Rossum."]]
responses = ["Python is a programming language created by George Lucas."]
predicted_answers = ["Python is a programming language created by George Lucas."]
evaluator = FaithfulnessEvaluator()
result = evaluator.run(questions=questions, contexts=contexts, responses=responses)
result = evaluator.run(questions=questions, contexts=contexts, predicted_answers=predicted_answers)
required_fields = {"individual_scores", "results", "score"}
assert all(field in result for field in required_fields)

View File

@ -11,17 +11,19 @@ class TestLLMEvaluator:
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
component = LLMEvaluator(
instructions="test-instruction",
inputs=[("responses", List[str])],
inputs=[("predicted_answers", List[str])],
outputs=["score"],
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
examples=[
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
],
)
assert component.api == "openai"
assert component.generator.client.api_key == "test-api-key"
assert component.instructions == "test-instruction"
assert component.inputs == [("responses", List[str])]
assert component.inputs == [("predicted_answers", List[str])]
assert component.outputs == ["score"]
assert component.examples == [
{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
]
def test_init_fail_wo_openai_api_key(self, monkeypatch):
@ -30,31 +32,39 @@ class TestLLMEvaluator:
LLMEvaluator(
api="openai",
instructions="test-instruction",
inputs=[("responses", List[str])],
inputs=[("predicted_answers", List[str])],
outputs=["score"],
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
examples=[
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
],
)
def test_init_with_parameters(self):
component = LLMEvaluator(
instructions="test-instruction",
api_key=Secret.from_token("test-api-key"),
inputs=[("responses", List[str])],
inputs=[("predicted_answers", List[str])],
outputs=["custom_score"],
api="openai",
examples=[
{"inputs": {"responses": "Damn, this is straight outta hell!!!"}, "outputs": {"custom_score": 1}},
{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"custom_score": 0}},
{
"inputs": {"predicted_answers": "Damn, this is straight outta hell!!!"},
"outputs": {"custom_score": 1},
},
{
"inputs": {"predicted_answers": "Football is the most popular sport."},
"outputs": {"custom_score": 0},
},
],
)
assert component.generator.client.api_key == "test-api-key"
assert component.api == "openai"
assert component.examples == [
{"inputs": {"responses": "Damn, this is straight outta hell!!!"}, "outputs": {"custom_score": 1}},
{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"custom_score": 0}},
{"inputs": {"predicted_answers": "Damn, this is straight outta hell!!!"}, "outputs": {"custom_score": 1}},
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"custom_score": 0}},
]
assert component.instructions == "test-instruction"
assert component.inputs == [("responses", List[str])]
assert component.inputs == [("predicted_answers", List[str])]
assert component.outputs == ["custom_score"]
def test_init_with_invalid_parameters(self, monkeypatch):
@ -63,85 +73,105 @@ class TestLLMEvaluator:
with pytest.raises(ValueError):
LLMEvaluator(
instructions="test-instruction",
inputs={("responses", List[str])},
inputs={("predicted_answers", List[str])},
outputs=["score"],
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
examples=[
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
],
)
with pytest.raises(ValueError):
LLMEvaluator(
instructions="test-instruction",
inputs=[(List[str], "responses")],
inputs=[(List[str], "predicted_answers")],
outputs=["score"],
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
examples=[
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
],
)
with pytest.raises(ValueError):
LLMEvaluator(
instructions="test-instruction",
inputs=[List[str]],
outputs=["score"],
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
examples=[
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
],
)
with pytest.raises(ValueError):
LLMEvaluator(
instructions="test-instruction",
inputs={("responses", str)},
inputs={("predicted_answers", str)},
outputs=["score"],
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
examples=[
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
],
)
# Invalid outputs
with pytest.raises(ValueError):
LLMEvaluator(
instructions="test-instruction",
inputs=[("responses", List[str])],
inputs=[("predicted_answers", List[str])],
outputs="score",
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
examples=[
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
],
)
with pytest.raises(ValueError):
LLMEvaluator(
instructions="test-instruction",
inputs=[("responses", List[str])],
inputs=[("predicted_answers", List[str])],
outputs=[["score"]],
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
examples=[
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
],
)
# Invalid examples
with pytest.raises(ValueError):
LLMEvaluator(
instructions="test-instruction",
inputs=[("responses", List[str])],
inputs=[("predicted_answers", List[str])],
outputs=["score"],
examples={
"inputs": {"responses": "Damn, this is straight outta hell!!!"},
"inputs": {"predicted_answers": "Damn, this is straight outta hell!!!"},
"outputs": {"custom_score": 1},
},
)
with pytest.raises(ValueError):
LLMEvaluator(
instructions="test-instruction",
inputs=[("responses", List[str])],
inputs=[("predicted_answers", List[str])],
outputs=["score"],
examples=[
[{"inputs": {"responses": "Damn, this is straight outta hell!!!"}, "outputs": {"custom_score": 1}}]
[
{
"inputs": {"predicted_answers": "Damn, this is straight outta hell!!!"},
"outputs": {"custom_score": 1},
}
]
],
)
with pytest.raises(ValueError):
LLMEvaluator(
instructions="test-instruction",
inputs=[("responses", List[str])],
outputs=["score"],
examples=[
{"wrong_key": {"responses": "Damn, this is straight outta hell!!!"}, "outputs": {"custom_score": 1}}
],
)
with pytest.raises(ValueError):
LLMEvaluator(
instructions="test-instruction",
inputs=[("responses", List[str])],
inputs=[("predicted_answers", List[str])],
outputs=["score"],
examples=[
{
"inputs": [{"responses": "Damn, this is straight outta hell!!!"}],
"wrong_key": {"predicted_answers": "Damn, this is straight outta hell!!!"},
"outputs": {"custom_score": 1},
}
],
)
with pytest.raises(ValueError):
LLMEvaluator(
instructions="test-instruction",
inputs=[("predicted_answers", List[str])],
outputs=["score"],
examples=[
{
"inputs": [{"predicted_answers": "Damn, this is straight outta hell!!!"}],
"outputs": [{"custom_score": 1}],
}
],
@ -149,7 +179,7 @@ class TestLLMEvaluator:
with pytest.raises(ValueError):
LLMEvaluator(
instructions="test-instruction",
inputs=[("responses", List[str])],
inputs=[("predicted_answers", List[str])],
outputs=["score"],
examples=[{"inputs": {1: "Damn, this is straight outta hell!!!"}, "outputs": {2: 1}}],
)
@ -158,9 +188,11 @@ class TestLLMEvaluator:
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
component = LLMEvaluator(
instructions="test-instruction",
inputs=[("responses", List[str])],
inputs=[("predicted_answers", List[str])],
outputs=["score"],
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
examples=[
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
],
)
data = component.to_dict()
assert data == {
@ -169,9 +201,11 @@ class TestLLMEvaluator:
"api_key": {"env_vars": ["OPENAI_API_KEY"], "strict": True, "type": "env_var"},
"api": "openai",
"instructions": "test-instruction",
"inputs": [("responses", List[str])],
"inputs": [("predicted_answers", List[str])],
"outputs": ["score"],
"examples": [{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
"examples": [
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
],
},
}
@ -184,19 +218,21 @@ class TestLLMEvaluator:
"api_key": {"env_vars": ["OPENAI_API_KEY"], "strict": True, "type": "env_var"},
"api": "openai",
"instructions": "test-instruction",
"inputs": [("responses", List[str])],
"inputs": [("predicted_answers", List[str])],
"outputs": ["score"],
"examples": [{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
"examples": [
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
],
},
}
component = LLMEvaluator.from_dict(data)
assert component.api == "openai"
assert component.generator.client.api_key == "test-api-key"
assert component.instructions == "test-instruction"
assert component.inputs == [("responses", List[str])]
assert component.inputs == [("predicted_answers", List[str])]
assert component.outputs == ["score"]
assert component.examples == [
{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
]
def test_to_dict_with_parameters(self, monkeypatch):
@ -204,12 +240,18 @@ class TestLLMEvaluator:
component = LLMEvaluator(
instructions="test-instruction",
api_key=Secret.from_env_var("ENV_VAR"),
inputs=[("responses", List[str])],
inputs=[("predicted_answers", List[str])],
outputs=["custom_score"],
api="openai",
examples=[
{"inputs": {"responses": "Damn, this is straight outta hell!!!"}, "outputs": {"custom_score": 1}},
{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"custom_score": 0}},
{
"inputs": {"predicted_answers": "Damn, this is straight outta hell!!!"},
"outputs": {"custom_score": 1},
},
{
"inputs": {"predicted_answers": "Football is the most popular sport."},
"outputs": {"custom_score": 0},
},
],
)
data = component.to_dict()
@ -219,11 +261,17 @@ class TestLLMEvaluator:
"api_key": {"env_vars": ["ENV_VAR"], "strict": True, "type": "env_var"},
"api": "openai",
"instructions": "test-instruction",
"inputs": [("responses", List[str])],
"inputs": [("predicted_answers", List[str])],
"outputs": ["custom_score"],
"examples": [
{"inputs": {"responses": "Damn, this is straight outta hell!!!"}, "outputs": {"custom_score": 1}},
{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"custom_score": 0}},
{
"inputs": {"predicted_answers": "Damn, this is straight outta hell!!!"},
"outputs": {"custom_score": 1},
},
{
"inputs": {"predicted_answers": "Football is the most popular sport."},
"outputs": {"custom_score": 0},
},
],
},
}
@ -232,9 +280,11 @@ class TestLLMEvaluator:
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
component = LLMEvaluator(
instructions="test-instruction",
inputs=[("questions", List[str]), ("responses", List[List[str]])],
inputs=[("questions", List[str]), ("predicted_answers", List[List[str]])],
outputs=["score"],
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
examples=[
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
],
)
def generator_run(self, *args, **kwargs):
@ -243,20 +293,23 @@ class TestLLMEvaluator:
monkeypatch.setattr("haystack.components.generators.openai.OpenAIGenerator.run", generator_run)
with pytest.raises(ValueError):
component.run(questions=["What is the capital of Germany?"], responses=[["Berlin"], ["Paris"]])
component.run(questions=["What is the capital of Germany?"], predicted_answers=[["Berlin"], ["Paris"]])
with pytest.raises(ValueError):
component.run(
questions=["What is the capital of Germany?", "What is the capital of France?"], responses=[["Berlin"]]
questions=["What is the capital of Germany?", "What is the capital of France?"],
predicted_answers=[["Berlin"]],
)
def test_run_returns_parsed_result(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
component = LLMEvaluator(
instructions="test-instruction",
inputs=[("questions", List[str]), ("responses", List[List[str]])],
inputs=[("questions", List[str]), ("predicted_answers", List[List[str]])],
outputs=["score"],
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
examples=[
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
],
)
def generator_run(self, *args, **kwargs):
@ -264,42 +317,46 @@ class TestLLMEvaluator:
monkeypatch.setattr("haystack.components.generators.openai.OpenAIGenerator.run", generator_run)
results = component.run(questions=["What is the capital of Germany?"], responses=["Berlin"])
results = component.run(questions=["What is the capital of Germany?"], predicted_answers=["Berlin"])
assert results == {"results": [{"score": 0.5}]}
def test_prepare_template(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
component = LLMEvaluator(
instructions="test-instruction",
inputs=[("responses", List[str])],
inputs=[("predicted_answers", List[str])],
outputs=["score"],
examples=[
{"inputs": {"responses": "Damn, this is straight outta hell!!!"}, "outputs": {"score": 1}},
{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}},
{"inputs": {"predicted_answers": "Damn, this is straight outta hell!!!"}, "outputs": {"score": 1}},
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}},
],
)
template = component.prepare_template()
assert (
template
== 'Instructions:\ntest-instruction\n\nGenerate the response in JSON format with the following keys:\n["score"]\nConsider the instructions and the examples below to determine those values.\n\nExamples:\nInputs:\n{"responses": "Damn, this is straight outta hell!!!"}\nOutputs:\n{"score": 1}\nInputs:\n{"responses": "Football is the most popular sport."}\nOutputs:\n{"score": 0}\n\nInputs:\n{"responses": {{ responses }}}\nOutputs:\n'
== 'Instructions:\ntest-instruction\n\nGenerate the response in JSON format with the following keys:\n["score"]\nConsider the instructions and the examples below to determine those values.\n\nExamples:\nInputs:\n{"predicted_answers": "Damn, this is straight outta hell!!!"}\nOutputs:\n{"score": 1}\nInputs:\n{"predicted_answers": "Football is the most popular sport."}\nOutputs:\n{"score": 0}\n\nInputs:\n{"predicted_answers": {{ predicted_answers }}}\nOutputs:\n'
)
def test_invalid_input_parameters(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
component = LLMEvaluator(
instructions="test-instruction",
inputs=[("responses", List[str])],
inputs=[("predicted_answers", List[str])],
outputs=["score"],
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
examples=[
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
],
)
# None of the expected parameters are received
with pytest.raises(ValueError):
component.validate_input_parameters(expected={"responses": List[str]}, received={"questions": List[str]})
component.validate_input_parameters(
expected={"predicted_answers": List[str]}, received={"questions": List[str]}
)
# Only one but not all the expected parameters are received
with pytest.raises(ValueError):
component.validate_input_parameters(
expected={"responses": List[str], "questions": List[str]}, received={"questions": List[str]}
expected={"predicted_answers": List[str], "questions": List[str]}, received={"questions": List[str]}
)
# Received inputs are not lists
@ -310,9 +367,11 @@ class TestLLMEvaluator:
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
component = LLMEvaluator(
instructions="test-instruction",
inputs=[("responses", List[str])],
inputs=[("predicted_answers", List[str])],
outputs=["score"],
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
examples=[
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
],
)
with pytest.raises(ValueError):
component.validate_outputs(expected=["score", "another_expected_output"], received='{"score": 1.0}')
@ -325,7 +384,9 @@ class TestLLMEvaluator:
LLMEvaluator(
api="unsupported_api",
instructions="test-instruction",
inputs=[("responses", List[str])],
inputs=[("predicted_answers", List[str])],
outputs=["score"],
examples=[{"inputs": {"responses": "Football is the most popular sport."}, "outputs": {"score": 0}}],
examples=[
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
],
)