mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-09-23 07:03:45 +00:00
fix: num_return_sequences should be less than num_beams, not top_k (#5280)
* formatting * remove top_k variable * add pytest * add numbers * string formatting * fix formatting * revert * extend tests with assertions for num_return_sequences --------- Co-authored-by: Julian Risch <julian.risch@deepset.ai>
This commit is contained in:
parent
41668f26d6
commit
514f93a6eb
@ -196,7 +196,6 @@ class HFLocalInvocationLayer(PromptModelInvocationLayer):
|
||||
"""
|
||||
output: List[Dict[str, str]] = []
|
||||
stop_words = kwargs.pop("stop_words", None)
|
||||
top_k = kwargs.pop("top_k", None)
|
||||
# either stream is True (will use default handler) or stream_handler is provided for custom handler
|
||||
stream = kwargs.get("stream", self.stream)
|
||||
stream_handler = kwargs.get("stream_handler", self.stream_handler)
|
||||
@ -241,12 +240,21 @@ class HFLocalInvocationLayer(PromptModelInvocationLayer):
|
||||
if stop_words:
|
||||
sw = StopWordsCriteria(tokenizer=self.pipe.tokenizer, stop_words=stop_words, device=self.pipe.device)
|
||||
model_input_kwargs["stopping_criteria"] = StoppingCriteriaList([sw])
|
||||
if top_k:
|
||||
model_input_kwargs["num_return_sequences"] = top_k
|
||||
if "num_beams" not in model_input_kwargs or model_input_kwargs["num_beams"] < top_k:
|
||||
if "num_beams" in model_input_kwargs:
|
||||
logger.warning("num_beams should not be less than top_k, hence setting it to %s", top_k)
|
||||
model_input_kwargs["num_beams"] = top_k
|
||||
|
||||
if "num_beams" in model_input_kwargs:
|
||||
num_beams = model_input_kwargs["num_beams"]
|
||||
if (
|
||||
"num_return_sequences" in model_input_kwargs
|
||||
and model_input_kwargs["num_return_sequences"] > num_beams
|
||||
):
|
||||
num_return_sequences = model_input_kwargs["num_return_sequences"]
|
||||
logger.warning(
|
||||
"num_return_sequences %s should not be larger than num_beams %s, hence setting it equal to num_beams",
|
||||
num_return_sequences,
|
||||
num_beams,
|
||||
)
|
||||
model_input_kwargs["num_return_sequences"] = num_beams
|
||||
|
||||
# max_new_tokens is used for text-generation and max_length for text2text-generation
|
||||
if is_text_generation:
|
||||
model_input_kwargs["max_new_tokens"] = model_input_kwargs.pop("max_length", self.max_length)
|
||||
|
@ -204,6 +204,48 @@ def test_ensure_token_limit_negative(caplog):
|
||||
assert caplog.records[0].message == expected_message
|
||||
|
||||
|
||||
@pytest.mark.unit
|
||||
def test_num_return_sequences_no_larger_than_num_beams(mock_pipeline, mock_get_task, caplog):
|
||||
"""
|
||||
Test that num_return_sequences cannot be larger than num_beams and that a warning is logged
|
||||
"""
|
||||
|
||||
layer = HFLocalInvocationLayer("google/flan-t5-base")
|
||||
|
||||
with patch.object(layer.pipe, "run_single", MagicMock()):
|
||||
layer.invoke(prompt="What does 42 mean?", generation_kwargs={"num_beams": 5, "num_return_sequences": 8})
|
||||
|
||||
expected_message = (
|
||||
"num_return_sequences 8 should not be larger than num_beams 5, hence setting it equal to num_beams"
|
||||
)
|
||||
# check that the warning is logged
|
||||
assert caplog.records[0].message == expected_message
|
||||
|
||||
# check that num_return_sequences is set to num_beams
|
||||
_, kwargs = layer.pipe.call_args
|
||||
assert kwargs["num_beams"] == 5
|
||||
assert kwargs["num_return_sequences"] == 5
|
||||
|
||||
|
||||
@pytest.mark.unit
|
||||
def test_num_beams_larger_than_num_return_sequences(mock_pipeline, mock_get_task, caplog):
|
||||
"""
|
||||
Test that num_beams can be larger than num_return_sequences and that no warning is logged
|
||||
"""
|
||||
layer = HFLocalInvocationLayer("google/flan-t5-base")
|
||||
|
||||
with patch.object(layer.pipe, "run_single", MagicMock()):
|
||||
layer.invoke(prompt="What does 42 mean?", generation_kwargs={"num_beams": 8, "num_return_sequences": 5})
|
||||
|
||||
# check that no warning is logged
|
||||
assert not caplog.records
|
||||
|
||||
# check that num_return_sequences remains unchanged
|
||||
_, kwargs = layer.pipe.call_args
|
||||
assert kwargs["num_beams"] == 8
|
||||
assert kwargs["num_return_sequences"] == 5
|
||||
|
||||
|
||||
@pytest.mark.unit
|
||||
def test_constructor_with_custom_pretrained_model(mock_pipeline, mock_get_task):
|
||||
"""
|
||||
|
Loading…
x
Reference in New Issue
Block a user