refactor: Remove the pin from the espnet module and fix the audio node tests. (#4128)

* fix: fix audio tests + unbound some dependencies

* fix: update for Python 3.8

* refactor: change numpy assertion

* feat: add voice recog. support on audio tests

* fix: fix var assignement

* chore: dummy commit

* fix: fix sndfile error

* refactor: change skip reason

* refactor: hardcode variable

* refactor: unpin numpy

* fix: pin numpy only for audio
This commit is contained in:
Daniel Bichuetti 2023-02-16 13:42:17 -03:00 committed by GitHub
parent e7c32da8d7
commit 5187cc1801
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 98 additions and 28 deletions

View File

@ -11,6 +11,7 @@ import torch
try:
import soundfile as sf
from espnet2.bin.tts_inference import Text2Speech as _Text2SpeechModel
except OSError as ose:
logging.exception(
"`libsndfile` not found, it's probably not installed. The node will most likely crash. "
@ -58,7 +59,7 @@ class TextToSpeech:
)
self.model = _Text2SpeechModel.from_pretrained(
model_name_or_path, device=resolved_devices[0].type, **(transformers_params or {})
str(model_name_or_path), device=resolved_devices[0].type, **(transformers_params or {})
)
def text_to_audio_file(

View File

@ -59,7 +59,6 @@ class DocumentToSpeech(BaseComponent):
content_audio = self.converter.text_to_audio_file(
text=doc.content, generated_audio_dir=self.generated_audio_dir, **self.params
)
audio_document = SpeechDocument.from_text_document(
document_object=doc,
audio_content=content_audio,

View File

@ -2,7 +2,12 @@ import json
import logging
import os
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Union, Literal
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Union
try:
from typing import Literal
except ImportError:
from typing_extensions import Literal # type: ignore
import numpy as np
import requests

View File

@ -1,5 +1,10 @@
from abc import abstractmethod
from typing import List, Dict, Union, Optional, Any, Literal
from typing import List, Dict, Union, Optional, Any
try:
from typing import Literal
except ImportError:
from typing_extensions import Literal # type: ignore
import logging
from pathlib import Path

View File

@ -148,9 +148,13 @@ docstores-gpu = [
audio = [
"pyworld>=0.3.1; python_version >= '3.8'",
"pyworld<0.3.1; python_version < '3.8'",
"espnet==202209", # https://github.com/deepset-ai/haystack/pull/3693
"ffmpeg-python==0.2.0",
"espnet",
"espnet-model-zoo",
"pydub",
"protobuf<=3.20.1",
"soundfile< 0.12.0",
"numpy<1.24", # Keep compatibility with latest numba
]
beir = [
"beir; platform_system != 'Windows'",

View File

@ -5,11 +5,14 @@ import numpy as np
try:
import soundfile as sf
import ffmpeg
soundfile_not_found = False
except:
soundfile_not_found = True
from transformers import WhisperProcessor, WhisperForConditionalGeneration
from haystack.schema import Span, Answer, SpeechAnswer, Document, SpeechDocument
from haystack.nodes.audio import AnswerToSpeech, DocumentToSpeech
from haystack.nodes.audio._text_to_speech import TextToSpeech
@ -17,32 +20,72 @@ from haystack.nodes.audio._text_to_speech import TextToSpeech
from ..conftest import SAMPLES_PATH
@pytest.mark.skipif(soundfile_not_found, reason="soundfile not found")
class WhisperHelper:
def __init__(self, model):
self._processor = WhisperProcessor.from_pretrained(model)
self._model = WhisperForConditionalGeneration.from_pretrained(model)
self._model.config.forced_decoder_ids = None
def transcribe(self, media_file: str):
output, _ = (
ffmpeg.input(media_file)
.output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=16000)
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
)
data = np.frombuffer(output, np.int16).flatten().astype(np.float32) / 32768.0
features = self._processor(data, sampling_rate=16000, return_tensors="pt").input_features
tokens = self._model.generate(features)
return self._processor.batch_decode(tokens, skip_special_tokens=True)
@pytest.fixture(scope="session", autouse=True)
def whisper_helper():
return WhisperHelper("openai/whisper-medium")
@pytest.mark.skipif(soundfile_not_found, reason="soundfile/ffmpeg not found")
class TestTextToSpeech:
def test_text_to_speech_audio_data(self):
def test_text_to_speech_audio_data(self, tmp_path, whisper_helper: WhisperHelper):
text2speech = TextToSpeech(
model_name_or_path="espnet/kan-bayashi_ljspeech_vits",
transformers_params={"seed": 777, "always_fix_seed": True},
transformers_params={"seed": 4535, "always_fix_seed": True},
)
expected_audio_data, _ = sf.read(SAMPLES_PATH / "audio" / "answer.wav")
audio_data = text2speech.text_to_audio_data(text="answer")
assert np.allclose(expected_audio_data, audio_data, atol=0.001)
sf.write(
data=audio_data,
file=str(tmp_path / "audio1.wav"),
format="wav",
subtype="PCM_16",
samplerate=text2speech.model.fs,
)
def test_text_to_speech_audio_file(self, tmp_path):
expedtec_doc = whisper_helper.transcribe(str(SAMPLES_PATH / "audio" / "answer.wav"))
generated_doc = whisper_helper.transcribe(str(tmp_path / "audio1.wav"))
assert expedtec_doc == generated_doc
def test_text_to_speech_audio_file(self, tmp_path, whisper_helper: WhisperHelper):
text2speech = TextToSpeech(
model_name_or_path="espnet/kan-bayashi_ljspeech_vits",
transformers_params={"seed": 777, "always_fix_seed": True},
transformers_params={"seed": 4535, "always_fix_seed": True},
)
expected_audio_data, _ = sf.read(SAMPLES_PATH / "audio" / "answer.wav")
audio_file = text2speech.text_to_audio_file(text="answer", generated_audio_dir=tmp_path / "test_audio")
assert os.path.exists(audio_file)
assert np.allclose(expected_audio_data, sf.read(audio_file)[0], atol=0.001)
def test_text_to_speech_compress_audio(self, tmp_path):
expected_doc = whisper_helper.transcribe(str(SAMPLES_PATH / "audio" / "answer.wav"))
generated_doc = whisper_helper.transcribe(str(audio_file))
assert expected_doc == generated_doc
def test_text_to_speech_compress_audio(self, tmp_path, whisper_helper: WhisperHelper):
text2speech = TextToSpeech(
model_name_or_path="espnet/kan-bayashi_ljspeech_vits",
transformers_params={"seed": 777, "always_fix_seed": True},
transformers_params={"seed": 4535, "always_fix_seed": True},
)
expected_audio_file = SAMPLES_PATH / "audio" / "answer.wav"
audio_file = text2speech.text_to_audio_file(
@ -50,13 +93,16 @@ class TestTextToSpeech:
)
assert os.path.exists(audio_file)
assert audio_file.suffix == ".mp3"
# FIXME find a way to make sure the compressed audio is similar enough to the wav version.
# At a manual inspection, the code seems to be working well.
def test_text_to_speech_naming_function(self, tmp_path):
expected_doc = whisper_helper.transcribe(str(expected_audio_file))
generated_doc = whisper_helper.transcribe(str(audio_file))
assert expected_doc == generated_doc
def test_text_to_speech_naming_function(self, tmp_path, whisper_helper: WhisperHelper):
text2speech = TextToSpeech(
model_name_or_path="espnet/kan-bayashi_ljspeech_vits",
transformers_params={"seed": 777, "always_fix_seed": True},
transformers_params={"seed": 4535, "always_fix_seed": True},
)
expected_audio_file = SAMPLES_PATH / "audio" / "answer.wav"
audio_file = text2speech.text_to_audio_file(
@ -64,9 +110,13 @@ class TestTextToSpeech:
)
assert os.path.exists(audio_file)
assert audio_file.name == expected_audio_file.name
assert np.allclose(sf.read(expected_audio_file)[0], sf.read(audio_file)[0], atol=0.001)
def test_answer_to_speech(self, tmp_path):
expected_doc = whisper_helper.transcribe(str(expected_audio_file))
generated_doc = whisper_helper.transcribe(str(audio_file))
assert expected_doc == generated_doc
def test_answer_to_speech(self, tmp_path, whisper_helper: WhisperHelper):
text_answer = Answer(
answer="answer",
type="extractive",
@ -81,7 +131,7 @@ class TestTextToSpeech:
answer2speech = AnswerToSpeech(
generated_audio_dir=tmp_path / "test_audio",
audio_params={"audio_naming_function": lambda text: text},
transformers_params={"seed": 777, "always_fix_seed": True},
transformers_params={"seed": 4535, "always_fix_seed": True},
)
results, _ = answer2speech.run(answers=[text_answer])
@ -97,10 +147,12 @@ class TestTextToSpeech:
assert audio_answer.meta["some_meta"] == "some_value"
assert audio_answer.meta["audio_format"] == "wav"
assert np.allclose(sf.read(audio_answer.answer_audio)[0], sf.read(expected_audio_answer)[0], atol=0.001)
assert np.allclose(sf.read(audio_answer.context_audio)[0], sf.read(expected_audio_context)[0], atol=0.001)
expected_doc = whisper_helper.transcribe(str(expected_audio_answer))
generated_doc = whisper_helper.transcribe(str(audio_answer.answer_audio))
def test_document_to_speech(self, tmp_path):
assert expected_doc == generated_doc
def test_document_to_speech(self, tmp_path, whisper_helper: WhisperHelper):
text_doc = Document(
content="this is the content of the document", content_type="text", meta={"name": "test_document.txt"}
)
@ -109,8 +161,9 @@ class TestTextToSpeech:
doc2speech = DocumentToSpeech(
generated_audio_dir=tmp_path / "test_audio",
audio_params={"audio_naming_function": lambda text: text},
transformers_params={"seed": 777, "always_fix_seed": True},
transformers_params={"seed": 4535, "always_fix_seed": True},
)
results, _ = doc2speech.run(documents=[text_doc])
audio_doc: SpeechDocument = results["documents"][0]
@ -121,4 +174,7 @@ class TestTextToSpeech:
assert audio_doc.meta["name"] == "test_document.txt"
assert audio_doc.meta["audio_format"] == "wav"
assert np.allclose(sf.read(audio_doc.content_audio)[0], sf.read(expected_audio_content)[0], atol=0.001)
expected_doc = whisper_helper.transcribe(str(expected_audio_content))
generated_doc = whisper_helper.transcribe(str(audio_doc.content_audio))
assert expected_doc == generated_doc

Binary file not shown.