diff --git a/tutorials/Tutorial4_FAQ_style_QA.ipynb b/tutorials/Tutorial4_FAQ_style_QA.ipynb index 587f440d6..14caa141f 100644 --- a/tutorials/Tutorial4_FAQ_style_QA.ipynb +++ b/tutorials/Tutorial4_FAQ_style_QA.ipynb @@ -186,6 +186,7 @@ "# Get embeddings for our questions from the FAQs\n", "questions = list(df[\"question\"].values)\n", "df[\"question_emb\"] = retriever.embed_queries(texts=questions)\n", + "df[\"question_emb\"] = df[\"question_emb\"].apply(list) # convert from numpy to list for ES indexing\n", "\n", "# Convert Dataframe to list of dicts and index them in our DocumentStore\n", "docs_to_index = df.to_dict(orient=\"records\")\n", diff --git a/tutorials/Tutorial4_FAQ_style_QA.py b/tutorials/Tutorial4_FAQ_style_QA.py index c1d949486..6b8268565 100755 --- a/tutorials/Tutorial4_FAQ_style_QA.py +++ b/tutorials/Tutorial4_FAQ_style_QA.py @@ -68,6 +68,7 @@ print(df.head()) # Get embeddings for our questions from the FAQs questions = list(df["question"].values) df["question_emb"] = retriever.embed_queries(texts=questions) +df["question_emb"] = df["question_emb"].apply(list) # convert from numpy to list for ES indexing # Convert Dataframe to list of dicts and index them in our DocumentStore docs_to_index = df.to_dict(orient="records")