update tutorial. del example.py. rename adaptive_model module

This commit is contained in:
Malte Pietsch 2019-11-25 17:41:03 +01:00
parent 515d65e7c4
commit 5f8d9bc7b8
7 changed files with 141 additions and 20 deletions

3
.gitignore vendored
View File

@ -127,3 +127,6 @@ dmypy.json
# Pyre type checker
.pyre/
# haystack files
farm_haystack/database/qa.db

View File

View File

@ -1,10 +1,17 @@
from farm_haystack.retriever.tfidf import TfidfRetriever
from farm_haystack.reader.adaptive_model import FARMReader
from farm_haystack.reader.farm import FARMReader
from farm_haystack.database import db
import logging
import farm
import pandas as pd
pd.options.display.max_colwidth = 80
logger = logging.getLogger(__name__)
logging.getLogger('farm').setLevel(logging.WARNING)
logging.getLogger('transformers').setLevel(logging.WARNING)
class Finder:
"""
@ -82,8 +89,11 @@ class Finder:
df_sliced = self.retriever.df.loc[retrieved_scores.keys()]
if verbose:
logger.info(
f"Identified {df_sliced.shape[0]} candidates via retriever:\n {df_sliced}"
f"Identified {df_sliced.shape[0]} candidates via retriever:\n {df_sliced.to_string(col_space=10, index=False)}"
)
logger.info(
f"Applying the reader now to look for the answer in detail ..."
)
inference_dicts = []
for idx, row in df_sliced.iterrows():
if candidate_doc_ids and row["document_id"] not in candidate_doc_ids:

View File

@ -8,7 +8,7 @@ from flask_restplus import Api, Resource
from farm_haystack import Finder
from farm_haystack.database import app
from farm_haystack.reader.adaptive_model import FARMReader
from farm_haystack.reader.farm import FARMReader
from farm_haystack.retriever.tfidf import TfidfRetriever
CORS(app)

View File

@ -66,7 +66,7 @@ class TfidfRetriever(BaseRetriever):
Paragraph(document_id=doc.id, paragraph_id=p_id, text=(p,))
)
p_id += 1
logger.info(f"Found {len(paragraphs)} candidate passages from {len(documents)} docs in DB")
logger.info(f"Found {len(paragraphs)} candidate paragraphs from {len(documents)} docs in DB")
return paragraphs
def retrieve(self, query, candidate_doc_ids=None, top_k=10):

View File

@ -19,15 +19,45 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Current working directory is /home/mp/deepset/dev/haystack\n"
]
}
],
"source": [
"# Let's start by adjust the working directory so that it is the root of the repository\n",
"# This should be run just once.\n",
"import os\n",
"os.chdir('../')\n",
"print(\"Current working directory is {}\".format(os.getcwd()))"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"pycharm": {
"is_executing": false
}
},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"I1125 16:55:41.544814 139975239116608 file_utils.py:39] PyTorch version 1.3.0 available.\n",
"I1125 16:55:41.619155 139975239116608 modeling_xlnet.py:194] Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .\n"
]
}
],
"source": [
"from farm_haystack.reader.adaptive_model import FARMReader\n",
"from farm_haystack.reader.farm import FARMReader\n",
"from farm_haystack.retriever.tfidf import TfidfRetriever\n",
"from farm_haystack import Finder\n",
"from farm_haystack.indexing.io import write_documents_to_db, fetch_archive_from_http\n",
@ -44,13 +74,23 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 3,
"metadata": {
"pycharm": {
"is_executing": false
}
},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"I1125 16:55:41.863932 139975239116608 io.py:57] Fetching from https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/wiki_gameofthrones_txt.zip to `data/article_txt_got`\n",
"100%|██████████| 1167348/1167348 [00:00<00:00, 9196388.44B/s]\n",
"I1125 16:55:47.962270 139975239116608 io.py:30] Wrote 517 docs to DB\n"
]
}
],
"source": [
"# Init a database (default: sqllite)\n",
"from farm_haystack.database import db\n",
@ -77,14 +117,22 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"metadata": {
"pycharm": {
"is_executing": false,
"name": "#%%\n"
}
},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"I1125 16:55:48.018222 139975239116608 tfidf.py:69] Found 2811 candidate paragraphs from 517 docs in DB\n"
]
}
],
"source": [
"# A retriever identifies the k most promising chunks of text that might contain the answer for our question\n",
"# Retrievers use some simple but fast algorithm, here: TF-IDF\n",
@ -93,22 +141,30 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 5,
"metadata": {
"pycharm": {
"is_executing": false
}
},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"W1125 16:55:53.613250 139975239116608 processor.py:170] Loading tokenizer from deprecated FARM config. If you used `custom_vocab` or `never_split_chars`, this won't work anymore.\n"
]
}
],
"source": [
"# A reader scans the text chunks in detail and extracts the k best answers\n",
"# Reader use more powerful but slower deep learning models, here: a BERT QA model trained via FARM on Squad 2.0\n",
"reader = FARMReader(model_dir=\"../FARM/saved_models/bert-english-qa-large\")"
"reader = FARMReader(model_dir=\"../FARM/saved_models/bert-english-qa-large\", use_gpu=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 6,
"metadata": {
"pycharm": {
"is_executing": false
@ -129,13 +185,34 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 7,
"metadata": {
"pycharm": {
"is_executing": false
}
},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"I1125 16:55:54.057870 139975239116608 __init__.py:92] Identified 10 candidates via retriever:\n",
" paragraph_id document_id text\n",
" 1257 227 \\n===Arya Stark===\\n'''Arya Stark''' portrayed by Maisie Williams. Arya Star...\n",
" 1023 169 \\n====Season 8====\\nArya reunites with Jon, Gendry, and the Hound, who have ...\n",
" 1016 169 \\n====Season 1====\\nArya accompanies her father Ned and her sister Sansa to ...\n",
" 718 144 \\n===''A Game of Thrones''===\\nSansa Stark begins the novel by being betroth...\n",
" 161 33 \\n===In Braavos===\\nLady Crane returns to her chambers to find a wounded Ary...\n",
" 1846 304 \\n== Characters ==\\nThe tale is told through the eyes of 9 recurring POV cha...\n",
" 1009 169 \\n==== ''A Game of Thrones'' ====\\nArya adopts a direwolf cub, which she nam...\n",
" 1022 169 \\n====Season 7====\\nTaking the face of Walder Frey, Arya gathers the men of ...\n",
" 847 163 \\n=== Arya Stark ===\\nArya Stark is the third child and younger daughter of ...\n",
" 562 117 \\n===On the Kingsroad===\\nCity Watchmen search the caravan for Gendry but ar...\n",
"I1125 16:55:54.058521 139975239116608 __init__.py:95] Applying the reader now to look for the answer in detail ...\n",
"Inferencing: 100%|██████████| 1/1 [00:24<00:00, 24.35s/it]\n"
]
}
],
"source": [
"# You can configure how many candidates the reader and retriever shall return\n",
"# The higher top_k_retriever, the better (but also the slower) your answers. \n",
@ -144,7 +221,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
@ -154,17 +231,48 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 9,
"metadata": {
"pycharm": {
"is_executing": false,
"name": "#%%\n"
}
},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ { 'answer': 'Eddard',\n",
" 'context': 'ry warrior queen. She travels with her father, Eddard, to '\n",
" \"King's Landing when he is made Hand of the\"},\n",
" { 'answer': 'Ned',\n",
" 'context': '\\n'\n",
" '====Season 1====\\n'\n",
" 'Arya accompanies her father Ned and her sister Sansa to '\n",
" \"King's Landing. Before the\"},\n",
" { 'answer': 'Lord Eddard',\n",
" 'context': ' is the younger daughter and third child of Lord Eddard '\n",
" 'and Catelyn Stark of Winterfell. Ever the to'},\n",
" { 'answer': 'Lord Eddard Stark',\n",
" 'context': ' Tourney of the Hand to honour her father Lord Eddard '\n",
" 'Stark, Sansa Stark is enchanted by the knights'},\n",
" { 'answer': 'Eddard and Catelyn Stark',\n",
" 'context': 'e third child and younger daughter of Eddard and Catelyn '\n",
" 'Stark. She serves as a POV character for 33'}]\n"
]
}
],
"source": [
"print_answers(prediction, details=\"minimal\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {