mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-12-30 00:30:09 +00:00
feat: GPT35Generator (#5714)
* chatgpt backend * fix tests * reno * remove print * helpers tests * add chatgpt generator * use openai sdk * remove backend * tests are broken * fix tests * stray param * move _check_troncated_answers into the class * wrong import * rename function * typo in test * add openai deps * mypy * improve system prompt docstring * typos update * Update haystack/preview/components/generators/openai/chatgpt.py * pylint * Update haystack/preview/components/generators/openai/chatgpt.py Co-authored-by: Silvano Cerza <3314350+silvanocerza@users.noreply.github.com> * Update haystack/preview/components/generators/openai/chatgpt.py Co-authored-by: Silvano Cerza <3314350+silvanocerza@users.noreply.github.com> * Update haystack/preview/components/generators/openai/chatgpt.py Co-authored-by: Silvano Cerza <3314350+silvanocerza@users.noreply.github.com> * review feedback * fix tests * freview feedback * reno * remove tenacity mock * gpt35generator * fix naming * remove stray references to chatgpt * fix e2e * Update releasenotes/notes/chatgpt-llm-generator-d043532654efe684.yaml Co-authored-by: Daria Fokina <daria.fokina@deepset.ai> * add another test * test wrong model name * review feedback --------- Co-authored-by: Daria Fokina <daria.fokina@deepset.ai> Co-authored-by: Silvano Cerza <3314350+silvanocerza@users.noreply.github.com>
This commit is contained in:
parent
c5edb45c10
commit
63cbde7287
86
e2e/preview/components/test_gpt35_generator.py
Normal file
86
e2e/preview/components/test_gpt35_generator.py
Normal file
@ -0,0 +1,86 @@
|
||||
import os
|
||||
import pytest
|
||||
import openai
|
||||
from haystack.preview.components.generators.openai.gpt35 import GPT35Generator
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not os.environ.get("OPENAI_API_KEY", None),
|
||||
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
|
||||
)
|
||||
def test_gpt35_generator_run():
|
||||
component = GPT35Generator(api_key=os.environ.get("OPENAI_API_KEY"), n=1)
|
||||
results = component.run(prompts=["What's the capital of France?", "What's the capital of Germany?"])
|
||||
|
||||
assert len(results["replies"]) == 2
|
||||
assert len(results["replies"][0]) == 1
|
||||
assert "Paris" in results["replies"][0][0]
|
||||
assert len(results["replies"][1]) == 1
|
||||
assert "Berlin" in results["replies"][1][0]
|
||||
|
||||
assert len(results["metadata"]) == 2
|
||||
assert len(results["metadata"][0]) == 1
|
||||
assert "gpt-3.5-turbo" in results["metadata"][0][0]["model"]
|
||||
assert "stop" == results["metadata"][0][0]["finish_reason"]
|
||||
assert len(results["metadata"][1]) == 1
|
||||
assert "gpt-3.5-turbo" in results["metadata"][1][0]["model"]
|
||||
assert "stop" == results["metadata"][1][0]["finish_reason"]
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not os.environ.get("OPENAI_API_KEY", None),
|
||||
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
|
||||
)
|
||||
def test_gpt35_generator_run_wrong_model_name():
|
||||
component = GPT35Generator(model_name="something-obviously-wrong", api_key=os.environ.get("OPENAI_API_KEY"), n=1)
|
||||
with pytest.raises(openai.InvalidRequestError, match="The model `something-obviously-wrong` does not exist"):
|
||||
component.run(prompts=["What's the capital of France?"])
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not os.environ.get("OPENAI_API_KEY", None),
|
||||
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
|
||||
)
|
||||
def test_gpt35_generator_run_above_context_length():
|
||||
component = GPT35Generator(api_key=os.environ.get("OPENAI_API_KEY"), n=1)
|
||||
with pytest.raises(
|
||||
openai.InvalidRequestError,
|
||||
match="This model's maximum context length is 4097 tokens. However, your messages resulted in 70008 tokens. "
|
||||
"Please reduce the length of the messages.",
|
||||
):
|
||||
component.run(prompts=["What's the capital of France? " * 10_000])
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not os.environ.get("OPENAI_API_KEY", None),
|
||||
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
|
||||
)
|
||||
def test_gpt35_generator_run_streaming():
|
||||
class Callback:
|
||||
def __init__(self):
|
||||
self.responses = ""
|
||||
|
||||
def __call__(self, chunk):
|
||||
self.responses += chunk.choices[0].delta.content if chunk.choices[0].delta else ""
|
||||
return chunk
|
||||
|
||||
callback = Callback()
|
||||
component = GPT35Generator(os.environ.get("OPENAI_API_KEY"), streaming_callback=callback, n=1)
|
||||
results = component.run(prompts=["What's the capital of France?", "What's the capital of Germany?"])
|
||||
|
||||
assert len(results["replies"]) == 2
|
||||
assert len(results["replies"][0]) == 1
|
||||
assert "Paris" in results["replies"][0][0]
|
||||
assert len(results["replies"][1]) == 1
|
||||
assert "Berlin" in results["replies"][1][0]
|
||||
|
||||
assert callback.responses == results["replies"][0][0] + results["replies"][1][0]
|
||||
|
||||
assert len(results["metadata"]) == 2
|
||||
assert len(results["metadata"][0]) == 1
|
||||
|
||||
assert "gpt-3.5-turbo" in results["metadata"][0][0]["model"]
|
||||
assert "stop" == results["metadata"][0][0]["finish_reason"]
|
||||
assert len(results["metadata"][1]) == 1
|
||||
assert "gpt-3.5-turbo" in results["metadata"][1][0]["model"]
|
||||
assert "stop" == results["metadata"][1][0]["finish_reason"]
|
||||
@ -1,33 +0,0 @@
|
||||
import logging
|
||||
|
||||
from haystack.preview.lazy_imports import LazyImport
|
||||
|
||||
with LazyImport("Run 'pip install tiktoken'") as tiktoken_import:
|
||||
import tiktoken
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def enforce_token_limit(prompt: str, tokenizer: "tiktoken.Encoding", max_tokens_limit: int) -> str:
|
||||
"""
|
||||
Ensure that the length of the prompt is within the max tokens limit of the model.
|
||||
If needed, truncate the prompt text so that it fits within the limit.
|
||||
|
||||
:param prompt: Prompt text to be sent to the generative model.
|
||||
:param tokenizer: The tokenizer used to encode the prompt.
|
||||
:param max_tokens_limit: The max tokens limit of the model.
|
||||
:return: The prompt text that fits within the max tokens limit of the model.
|
||||
"""
|
||||
tiktoken_import.check()
|
||||
tokens = tokenizer.encode(prompt)
|
||||
tokens_count = len(tokens)
|
||||
if tokens_count > max_tokens_limit:
|
||||
logger.warning(
|
||||
"The prompt has been truncated from %s tokens to %s tokens to fit within the max token limit. "
|
||||
"Reduce the length of the prompt to prevent it from being cut off.",
|
||||
tokens_count,
|
||||
max_tokens_limit,
|
||||
)
|
||||
prompt = tokenizer.decode(tokens[:max_tokens_limit])
|
||||
return prompt
|
||||
213
haystack/preview/components/generators/openai/gpt35.py
Normal file
213
haystack/preview/components/generators/openai/gpt35.py
Normal file
@ -0,0 +1,213 @@
|
||||
from typing import Optional, List, Callable, Dict, Any
|
||||
|
||||
import sys
|
||||
import logging
|
||||
from dataclasses import dataclass, asdict
|
||||
|
||||
import openai
|
||||
|
||||
from haystack.preview import component, default_from_dict, default_to_dict, DeserializationError
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class _ChatMessage:
|
||||
content: str
|
||||
role: str
|
||||
|
||||
|
||||
def default_streaming_callback(chunk):
|
||||
"""
|
||||
Default callback function for streaming responses from OpenAI API.
|
||||
Prints the tokens of the first completion to stdout as soon as they are received and returns the chunk unchanged.
|
||||
"""
|
||||
if hasattr(chunk.choices[0].delta, "content"):
|
||||
print(chunk.choices[0].delta.content, flush=True, end="")
|
||||
return chunk
|
||||
|
||||
|
||||
@component
|
||||
class GPT35Generator:
|
||||
"""
|
||||
LLM Generator compatible with GPT3.5 (ChatGPT) large language models.
|
||||
|
||||
Queries the LLM using OpenAI's API. Invocations are made using OpenAI SDK ('openai' package)
|
||||
See [OpenAI GPT3.5 API](https://platform.openai.com/docs/guides/chat) for more details.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
api_key: str,
|
||||
model_name: str = "gpt-3.5-turbo",
|
||||
system_prompt: Optional[str] = None,
|
||||
streaming_callback: Optional[Callable] = None,
|
||||
api_base_url: str = "https://api.openai.com/v1",
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Creates an instance of GPT35Generator for OpenAI's GPT-3.5 model.
|
||||
|
||||
:param api_key: The OpenAI API key.
|
||||
:param model_name: The name of the model to use.
|
||||
:param system_prompt: An additional message to be sent to the LLM at the beginning of each conversation.
|
||||
Typically, a conversation is formatted with a system message first, followed by alternating messages from
|
||||
the 'user' (the "queries") and the 'assistant' (the "responses"). The system message helps set the behavior
|
||||
of the assistant. For example, you can modify the personality of the assistant or provide specific
|
||||
instructions about how it should behave throughout the conversation.
|
||||
:param streaming_callback: A callback function that is called when a new token is received from the stream.
|
||||
The callback function should accept two parameters: the token received from the stream and **kwargs.
|
||||
The callback function should return the token to be sent to the stream. If the callback function is not
|
||||
provided, the token is printed to stdout.
|
||||
:param api_base_url: The OpenAI API Base url, defaults to `https://api.openai.com/v1`.
|
||||
:param kwargs: Other parameters to use for the model. These parameters are all sent directly to the OpenAI
|
||||
endpoint. See OpenAI [documentation](https://platform.openai.com/docs/api-reference/chat) for more details.
|
||||
Some of the supported parameters:
|
||||
- `max_tokens`: The maximum number of tokens the output text can have.
|
||||
- `temperature`: What sampling temperature to use. Higher values mean the model will take more risks.
|
||||
Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer.
|
||||
- `top_p`: An alternative to sampling with temperature, called nucleus sampling, where the model
|
||||
considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens
|
||||
comprising the top 10% probability mass are considered.
|
||||
- `n`: How many completions to generate for each prompt. For example, if the LLM gets 3 prompts and n is 2,
|
||||
it will generate two completions for each of the three prompts, ending up with 6 completions in total.
|
||||
- `stop`: One or more sequences after which the LLM should stop generating tokens.
|
||||
- `presence_penalty`: What penalty to apply if a token is already present at all. Bigger values mean
|
||||
the model will be less likely to repeat the same token in the text.
|
||||
- `frequency_penalty`: What penalty to apply if a token has already been generated in the text.
|
||||
Bigger values mean the model will be less likely to repeat the same token in the text.
|
||||
- `logit_bias`: Add a logit bias to specific tokens. The keys of the dictionary are tokens and the
|
||||
values are the bias to add to that token.
|
||||
"""
|
||||
self.api_key = api_key
|
||||
self.model_name = model_name
|
||||
self.system_prompt = system_prompt
|
||||
self.model_parameters = kwargs
|
||||
self.streaming_callback = streaming_callback
|
||||
self.api_base_url = api_base_url
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""
|
||||
Serialize this component to a dictionary.
|
||||
"""
|
||||
if self.streaming_callback:
|
||||
module = self.streaming_callback.__module__
|
||||
if module == "builtins":
|
||||
callback_name = self.streaming_callback.__name__
|
||||
else:
|
||||
callback_name = f"{module}.{self.streaming_callback.__name__}"
|
||||
else:
|
||||
callback_name = None
|
||||
|
||||
return default_to_dict(
|
||||
self,
|
||||
api_key=self.api_key,
|
||||
model_name=self.model_name,
|
||||
system_prompt=self.system_prompt,
|
||||
streaming_callback=callback_name,
|
||||
api_base_url=self.api_base_url,
|
||||
**self.model_parameters,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, data: Dict[str, Any]) -> "GPT35Generator":
|
||||
"""
|
||||
Deserialize this component from a dictionary.
|
||||
"""
|
||||
init_params = data.get("init_parameters", {})
|
||||
streaming_callback = None
|
||||
if "streaming_callback" in init_params:
|
||||
parts = init_params["streaming_callback"].split(".")
|
||||
module_name = ".".join(parts[:-1])
|
||||
function_name = parts[-1]
|
||||
module = sys.modules.get(module_name, None)
|
||||
if not module:
|
||||
raise DeserializationError(f"Could not locate the module of the streaming callback: {module_name}")
|
||||
streaming_callback = getattr(module, function_name, None)
|
||||
if not streaming_callback:
|
||||
raise DeserializationError(f"Could not locate the streaming callback: {function_name}")
|
||||
data["init_parameters"]["streaming_callback"] = streaming_callback
|
||||
return default_from_dict(cls, data)
|
||||
|
||||
@component.output_types(replies=List[List[str]], metadata=List[Dict[str, Any]])
|
||||
def run(self, prompts: List[str]):
|
||||
"""
|
||||
Queries the LLM with the prompts to produce replies.
|
||||
|
||||
:param prompts: The prompts to be sent to the generative model.
|
||||
"""
|
||||
chats = []
|
||||
for prompt in prompts:
|
||||
message = _ChatMessage(content=prompt, role="user")
|
||||
if self.system_prompt:
|
||||
chats.append([_ChatMessage(content=self.system_prompt, role="system"), message])
|
||||
else:
|
||||
chats.append([message])
|
||||
|
||||
all_replies, all_metadata = [], []
|
||||
for chat in chats:
|
||||
completion = openai.ChatCompletion.create(
|
||||
model=self.model_name,
|
||||
api_key=self.api_key,
|
||||
messages=[asdict(message) for message in chat],
|
||||
stream=self.streaming_callback is not None,
|
||||
**self.model_parameters,
|
||||
)
|
||||
|
||||
replies: List[str]
|
||||
metadata: List[Dict[str, Any]]
|
||||
if self.streaming_callback:
|
||||
replies_dict = {}
|
||||
metadata_dict: Dict[str, Dict[str, Any]] = {}
|
||||
for chunk in completion:
|
||||
chunk = self.streaming_callback(chunk)
|
||||
for choice in chunk.choices:
|
||||
if choice.index not in replies_dict:
|
||||
replies_dict[choice.index] = ""
|
||||
metadata_dict[choice.index] = {}
|
||||
|
||||
if hasattr(choice.delta, "content"):
|
||||
replies_dict[choice.index] += choice.delta.content
|
||||
metadata_dict[choice.index] = {
|
||||
"model": chunk.model,
|
||||
"index": choice.index,
|
||||
"finish_reason": choice.finish_reason,
|
||||
}
|
||||
all_replies.append(list(replies_dict.values()))
|
||||
all_metadata.append(list(metadata_dict.values()))
|
||||
self._check_truncated_answers(list(metadata_dict.values()))
|
||||
|
||||
else:
|
||||
metadata = [
|
||||
{
|
||||
"model": completion.model,
|
||||
"index": choice.index,
|
||||
"finish_reason": choice.finish_reason,
|
||||
"usage": dict(completion.usage.items()),
|
||||
}
|
||||
for choice in completion.choices
|
||||
]
|
||||
replies = [choice.message.content.strip() for choice in completion.choices]
|
||||
all_replies.append(replies)
|
||||
all_metadata.append(metadata)
|
||||
self._check_truncated_answers(metadata)
|
||||
|
||||
return {"replies": all_replies, "metadata": all_metadata}
|
||||
|
||||
def _check_truncated_answers(self, metadata: List[Dict[str, Any]]):
|
||||
"""
|
||||
Check the `finish_reason` returned with the OpenAI completions.
|
||||
If the `finish_reason` is `length`, log a warning to the user.
|
||||
|
||||
:param result: The result returned from the OpenAI API.
|
||||
:param payload: The payload sent to the OpenAI API.
|
||||
"""
|
||||
truncated_completions = sum(1 for meta in metadata if meta.get("finish_reason") != "stop")
|
||||
if truncated_completions > 0:
|
||||
logger.warning(
|
||||
"%s out of the %s completions have been truncated before reaching a natural stopping point. "
|
||||
"Increase the max_tokens parameter to allow for longer completions.",
|
||||
truncated_completions,
|
||||
len(metadata),
|
||||
)
|
||||
@ -80,6 +80,7 @@ dependencies = [
|
||||
|
||||
# Preview
|
||||
"canals==0.8.0",
|
||||
"openai",
|
||||
"Jinja2",
|
||||
"openai-whisper", # FIXME https://github.com/deepset-ai/haystack/issues/5731
|
||||
|
||||
|
||||
@ -0,0 +1,2 @@
|
||||
preview:
|
||||
- Introduce `GPT35Generator`, a class that can generate completions using OpenAI Chat models like GPT3.5 and GPT4.
|
||||
@ -0,0 +1,332 @@
|
||||
from unittest.mock import patch, Mock
|
||||
from copy import deepcopy
|
||||
|
||||
import pytest
|
||||
import openai
|
||||
from openai.util import convert_to_openai_object
|
||||
|
||||
from haystack.preview.components.generators.openai.gpt35 import GPT35Generator
|
||||
from haystack.preview.components.generators.openai.gpt35 import default_streaming_callback
|
||||
|
||||
|
||||
def mock_openai_response(messages: str, model: str = "gpt-3.5-turbo-0301", **kwargs) -> openai.ChatCompletion:
|
||||
response = f"response for these messages --> {' - '.join(msg['role']+': '+msg['content'] for msg in messages)}"
|
||||
base_dict = {
|
||||
"id": "chatcmpl-7NaPEA6sgX7LnNPyKPbRlsyqLbr5V",
|
||||
"object": "chat.completion",
|
||||
"created": 1685855844,
|
||||
"model": model,
|
||||
"usage": {"prompt_tokens": 57, "completion_tokens": 40, "total_tokens": 97},
|
||||
}
|
||||
base_dict["choices"] = [
|
||||
{"message": {"role": "assistant", "content": response}, "finish_reason": "stop", "index": "0"}
|
||||
]
|
||||
return convert_to_openai_object(deepcopy(base_dict))
|
||||
|
||||
|
||||
def mock_openai_stream_response(messages: str, model: str = "gpt-3.5-turbo-0301", **kwargs) -> openai.ChatCompletion:
|
||||
response = f"response for these messages --> {' - '.join(msg['role']+': '+msg['content'] for msg in messages)}"
|
||||
base_dict = {
|
||||
"id": "chatcmpl-7NaPEA6sgX7LnNPyKPbRlsyqLbr5V",
|
||||
"object": "chat.completion",
|
||||
"created": 1685855844,
|
||||
"model": model,
|
||||
}
|
||||
base_dict["choices"] = [{"delta": {"role": "assistant"}, "finish_reason": None, "index": "0"}]
|
||||
yield convert_to_openai_object(base_dict)
|
||||
for token in response.split():
|
||||
base_dict["choices"][0]["delta"] = {"content": token + " "}
|
||||
yield convert_to_openai_object(base_dict)
|
||||
base_dict["choices"] = [{"delta": {"content": ""}, "finish_reason": "stop", "index": "0"}]
|
||||
yield convert_to_openai_object(base_dict)
|
||||
|
||||
|
||||
class TestGPT35Generator:
|
||||
@pytest.mark.unit
|
||||
def test_init_default(self):
|
||||
component = GPT35Generator(api_key="test-api-key")
|
||||
assert component.system_prompt is None
|
||||
assert component.api_key == "test-api-key"
|
||||
assert component.model_name == "gpt-3.5-turbo"
|
||||
assert component.streaming_callback is None
|
||||
assert component.api_base_url == "https://api.openai.com/v1"
|
||||
assert component.model_parameters == {}
|
||||
|
||||
@pytest.mark.unit
|
||||
def test_init_with_parameters(self):
|
||||
callback = lambda x: x
|
||||
component = GPT35Generator(
|
||||
api_key="test-api-key",
|
||||
model_name="gpt-4",
|
||||
system_prompt="test-system-prompt",
|
||||
max_tokens=10,
|
||||
some_test_param="test-params",
|
||||
streaming_callback=callback,
|
||||
api_base_url="test-base-url",
|
||||
)
|
||||
assert component.system_prompt == "test-system-prompt"
|
||||
assert component.api_key == "test-api-key"
|
||||
assert component.model_name == "gpt-4"
|
||||
assert component.streaming_callback == callback
|
||||
assert component.api_base_url == "test-base-url"
|
||||
assert component.model_parameters == {"max_tokens": 10, "some_test_param": "test-params"}
|
||||
|
||||
@pytest.mark.unit
|
||||
def test_to_dict_default(self):
|
||||
component = GPT35Generator(api_key="test-api-key")
|
||||
data = component.to_dict()
|
||||
assert data == {
|
||||
"type": "GPT35Generator",
|
||||
"init_parameters": {
|
||||
"api_key": "test-api-key",
|
||||
"model_name": "gpt-3.5-turbo",
|
||||
"system_prompt": None,
|
||||
"streaming_callback": None,
|
||||
"api_base_url": "https://api.openai.com/v1",
|
||||
},
|
||||
}
|
||||
|
||||
@pytest.mark.unit
|
||||
def test_to_dict_with_parameters(self):
|
||||
component = GPT35Generator(
|
||||
api_key="test-api-key",
|
||||
model_name="gpt-4",
|
||||
system_prompt="test-system-prompt",
|
||||
max_tokens=10,
|
||||
some_test_param="test-params",
|
||||
streaming_callback=default_streaming_callback,
|
||||
api_base_url="test-base-url",
|
||||
)
|
||||
data = component.to_dict()
|
||||
assert data == {
|
||||
"type": "GPT35Generator",
|
||||
"init_parameters": {
|
||||
"api_key": "test-api-key",
|
||||
"model_name": "gpt-4",
|
||||
"system_prompt": "test-system-prompt",
|
||||
"max_tokens": 10,
|
||||
"some_test_param": "test-params",
|
||||
"api_base_url": "test-base-url",
|
||||
"streaming_callback": "haystack.preview.components.generators.openai.gpt35.default_streaming_callback",
|
||||
},
|
||||
}
|
||||
|
||||
@pytest.mark.unit
|
||||
def test_to_dict_with_lambda_streaming_callback(self):
|
||||
component = GPT35Generator(
|
||||
api_key="test-api-key",
|
||||
model_name="gpt-4",
|
||||
system_prompt="test-system-prompt",
|
||||
max_tokens=10,
|
||||
some_test_param="test-params",
|
||||
streaming_callback=lambda x: x,
|
||||
api_base_url="test-base-url",
|
||||
)
|
||||
data = component.to_dict()
|
||||
assert data == {
|
||||
"type": "GPT35Generator",
|
||||
"init_parameters": {
|
||||
"api_key": "test-api-key",
|
||||
"model_name": "gpt-4",
|
||||
"system_prompt": "test-system-prompt",
|
||||
"max_tokens": 10,
|
||||
"some_test_param": "test-params",
|
||||
"api_base_url": "test-base-url",
|
||||
"streaming_callback": "test_gpt35_generator.<lambda>",
|
||||
},
|
||||
}
|
||||
|
||||
@pytest.mark.unit
|
||||
def test_from_dict(self):
|
||||
data = {
|
||||
"type": "GPT35Generator",
|
||||
"init_parameters": {
|
||||
"api_key": "test-api-key",
|
||||
"model_name": "gpt-4",
|
||||
"system_prompt": "test-system-prompt",
|
||||
"max_tokens": 10,
|
||||
"some_test_param": "test-params",
|
||||
"api_base_url": "test-base-url",
|
||||
"streaming_callback": "haystack.preview.components.generators.openai.gpt35.default_streaming_callback",
|
||||
},
|
||||
}
|
||||
component = GPT35Generator.from_dict(data)
|
||||
assert component.system_prompt == "test-system-prompt"
|
||||
assert component.api_key == "test-api-key"
|
||||
assert component.model_name == "gpt-4"
|
||||
assert component.streaming_callback == default_streaming_callback
|
||||
assert component.api_base_url == "test-base-url"
|
||||
assert component.model_parameters == {"max_tokens": 10, "some_test_param": "test-params"}
|
||||
|
||||
@pytest.mark.unit
|
||||
def test_run_no_system_prompt(self):
|
||||
with patch("haystack.preview.components.generators.openai.gpt35.openai.ChatCompletion") as gpt35_patch:
|
||||
gpt35_patch.create.side_effect = mock_openai_response
|
||||
component = GPT35Generator(api_key="test-api-key")
|
||||
results = component.run(prompts=["test-prompt-1", "test-prompt-2"])
|
||||
assert results == {
|
||||
"replies": [
|
||||
["response for these messages --> user: test-prompt-1"],
|
||||
["response for these messages --> user: test-prompt-2"],
|
||||
],
|
||||
"metadata": [
|
||||
[
|
||||
{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"index": "0",
|
||||
"finish_reason": "stop",
|
||||
"usage": {"prompt_tokens": 57, "completion_tokens": 40, "total_tokens": 97},
|
||||
}
|
||||
],
|
||||
[
|
||||
{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"index": "0",
|
||||
"finish_reason": "stop",
|
||||
"usage": {"prompt_tokens": 57, "completion_tokens": 40, "total_tokens": 97},
|
||||
}
|
||||
],
|
||||
],
|
||||
}
|
||||
assert gpt35_patch.create.call_count == 2
|
||||
gpt35_patch.create.assert_any_call(
|
||||
model="gpt-3.5-turbo",
|
||||
api_key="test-api-key",
|
||||
messages=[{"role": "user", "content": "test-prompt-1"}],
|
||||
stream=False,
|
||||
)
|
||||
gpt35_patch.create.assert_any_call(
|
||||
model="gpt-3.5-turbo",
|
||||
api_key="test-api-key",
|
||||
messages=[{"role": "user", "content": "test-prompt-2"}],
|
||||
stream=False,
|
||||
)
|
||||
|
||||
@pytest.mark.unit
|
||||
def test_run_with_system_prompt(self):
|
||||
with patch("haystack.preview.components.generators.openai.gpt35.openai.ChatCompletion") as gpt35_patch:
|
||||
gpt35_patch.create.side_effect = mock_openai_response
|
||||
component = GPT35Generator(api_key="test-api-key", system_prompt="test-system-prompt")
|
||||
results = component.run(prompts=["test-prompt-1", "test-prompt-2"])
|
||||
assert results == {
|
||||
"replies": [
|
||||
["response for these messages --> system: test-system-prompt - user: test-prompt-1"],
|
||||
["response for these messages --> system: test-system-prompt - user: test-prompt-2"],
|
||||
],
|
||||
"metadata": [
|
||||
[
|
||||
{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"index": "0",
|
||||
"finish_reason": "stop",
|
||||
"usage": {"prompt_tokens": 57, "completion_tokens": 40, "total_tokens": 97},
|
||||
}
|
||||
],
|
||||
[
|
||||
{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"index": "0",
|
||||
"finish_reason": "stop",
|
||||
"usage": {"prompt_tokens": 57, "completion_tokens": 40, "total_tokens": 97},
|
||||
}
|
||||
],
|
||||
],
|
||||
}
|
||||
assert gpt35_patch.create.call_count == 2
|
||||
gpt35_patch.create.assert_any_call(
|
||||
model="gpt-3.5-turbo",
|
||||
api_key="test-api-key",
|
||||
messages=[
|
||||
{"role": "system", "content": "test-system-prompt"},
|
||||
{"role": "user", "content": "test-prompt-1"},
|
||||
],
|
||||
stream=False,
|
||||
)
|
||||
gpt35_patch.create.assert_any_call(
|
||||
model="gpt-3.5-turbo",
|
||||
api_key="test-api-key",
|
||||
messages=[
|
||||
{"role": "system", "content": "test-system-prompt"},
|
||||
{"role": "user", "content": "test-prompt-2"},
|
||||
],
|
||||
stream=False,
|
||||
)
|
||||
|
||||
@pytest.mark.unit
|
||||
def test_run_with_parameters(self):
|
||||
with patch("haystack.preview.components.generators.openai.gpt35.openai.ChatCompletion") as gpt35_patch:
|
||||
gpt35_patch.create.side_effect = mock_openai_response
|
||||
component = GPT35Generator(api_key="test-api-key", max_tokens=10)
|
||||
component.run(prompts=["test-prompt-1", "test-prompt-2"])
|
||||
assert gpt35_patch.create.call_count == 2
|
||||
gpt35_patch.create.assert_any_call(
|
||||
model="gpt-3.5-turbo",
|
||||
api_key="test-api-key",
|
||||
messages=[{"role": "user", "content": "test-prompt-1"}],
|
||||
stream=False,
|
||||
max_tokens=10,
|
||||
)
|
||||
gpt35_patch.create.assert_any_call(
|
||||
model="gpt-3.5-turbo",
|
||||
api_key="test-api-key",
|
||||
messages=[{"role": "user", "content": "test-prompt-2"}],
|
||||
stream=False,
|
||||
max_tokens=10,
|
||||
)
|
||||
|
||||
@pytest.mark.unit
|
||||
def test_run_stream(self):
|
||||
with patch("haystack.preview.components.generators.openai.gpt35.openai.ChatCompletion") as gpt35_patch:
|
||||
mock_callback = Mock()
|
||||
mock_callback.side_effect = default_streaming_callback
|
||||
gpt35_patch.create.side_effect = mock_openai_stream_response
|
||||
component = GPT35Generator(
|
||||
api_key="test-api-key", system_prompt="test-system-prompt", streaming_callback=mock_callback
|
||||
)
|
||||
results = component.run(prompts=["test-prompt-1", "test-prompt-2"])
|
||||
assert results == {
|
||||
"replies": [
|
||||
["response for these messages --> system: test-system-prompt - user: test-prompt-1 "],
|
||||
["response for these messages --> system: test-system-prompt - user: test-prompt-2 "],
|
||||
],
|
||||
"metadata": [
|
||||
[{"model": "gpt-3.5-turbo", "index": "0", "finish_reason": "stop"}],
|
||||
[{"model": "gpt-3.5-turbo", "index": "0", "finish_reason": "stop"}],
|
||||
],
|
||||
}
|
||||
# Calls count: (10 tokens per prompt + 1 token for the role + 1 empty termination token) * 2 prompts
|
||||
assert mock_callback.call_count == 24
|
||||
assert gpt35_patch.create.call_count == 2
|
||||
gpt35_patch.create.assert_any_call(
|
||||
model="gpt-3.5-turbo",
|
||||
api_key="test-api-key",
|
||||
messages=[
|
||||
{"role": "system", "content": "test-system-prompt"},
|
||||
{"role": "user", "content": "test-prompt-1"},
|
||||
],
|
||||
stream=True,
|
||||
)
|
||||
gpt35_patch.create.assert_any_call(
|
||||
model="gpt-3.5-turbo",
|
||||
api_key="test-api-key",
|
||||
messages=[
|
||||
{"role": "system", "content": "test-system-prompt"},
|
||||
{"role": "user", "content": "test-prompt-2"},
|
||||
],
|
||||
stream=True,
|
||||
)
|
||||
|
||||
@pytest.mark.unit
|
||||
def test_check_truncated_answers(self, caplog):
|
||||
component = GPT35Generator(api_key="test-api-key")
|
||||
metadata = [
|
||||
{"finish_reason": "stop"},
|
||||
{"finish_reason": "content_filter"},
|
||||
{"finish_reason": "length"},
|
||||
{"finish_reason": "stop"},
|
||||
]
|
||||
component._check_truncated_answers(metadata)
|
||||
assert caplog.records[0].message == (
|
||||
"2 out of the 4 completions have been truncated before reaching a natural "
|
||||
"stopping point. Increase the max_tokens parameter to allow for longer completions."
|
||||
)
|
||||
@ -1,20 +0,0 @@
|
||||
import pytest
|
||||
|
||||
from haystack.preview.components.generators.openai._helpers import enforce_token_limit
|
||||
|
||||
|
||||
@pytest.mark.unit
|
||||
def test_enforce_token_limit_above_limit(caplog, mock_tokenizer):
|
||||
prompt = enforce_token_limit("This is a test prompt.", tokenizer=mock_tokenizer, max_tokens_limit=3)
|
||||
assert prompt == "This is a"
|
||||
assert caplog.records[0].message == (
|
||||
"The prompt has been truncated from 5 tokens to 3 tokens to fit within the max token "
|
||||
"limit. Reduce the length of the prompt to prevent it from being cut off."
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.unit
|
||||
def test_enforce_token_limit_below_limit(caplog, mock_tokenizer):
|
||||
prompt = enforce_token_limit("This is a test prompt.", tokenizer=mock_tokenizer, max_tokens_limit=100)
|
||||
assert prompt == "This is a test prompt."
|
||||
assert not caplog.records
|
||||
@ -1,4 +1,4 @@
|
||||
from unittest.mock import Mock
|
||||
from unittest.mock import Mock, patch
|
||||
import pytest
|
||||
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user