refactor: Adapt retriever benchmarks script (#5004)

* Generate eval result in separate method

* Adapt benchmarking utils

* Adapt running retriever benchmarks

* Adapt error message

* Raise error if file doesn't exist

* Raise error if path doesn't exist or is a directory
This commit is contained in:
bogdankostic 2023-05-25 15:39:02 +02:00 committed by GitHub
parent 8392e813a8
commit 6e10fdab27
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 137 additions and 346 deletions

View File

@ -1,364 +1,150 @@
import pandas as pd
from pathlib import Path
from time import perf_counter
from utils import get_document_store, get_retriever, index_to_doc_store, load_config, download_from_url
from haystack.document_stores.utils import eval_data_from_json
from haystack.document_stores.faiss import FAISSDocumentStore
from haystack.schema import Document
import pickle
import time
from tqdm import tqdm
import logging
import datetime
import random
import traceback
import json
from results_to_json import retriever as retriever_json
from templates import RETRIEVER_TEMPLATE, RETRIEVER_MAP_TEMPLATE, RETRIEVER_SPEED_TEMPLATE
from haystack.utils import stop_service
from typing import Dict
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logging.getLogger("haystack.retriever.base").setLevel(logging.WARN)
logging.getLogger("elasticsearch").setLevel(logging.WARN)
from haystack.nodes import BaseRetriever
from haystack import Pipeline
from haystack.utils import aggregate_labels
doc_index = "eval_document"
label_index = "label"
index_results_file = "retriever_index_results.csv"
query_results_file = "retriever_query_results.csv"
overview_json = "../../docs/_src/benchmarks/retriever_performance.json"
map_json = "../../docs/_src/benchmarks/retriever_map.json"
speed_json = "../../docs/_src/benchmarks/retriever_speed.json"
DEVICES = None
from utils import load_eval_data
seed = 42
random.seed(42)
def benchmark_indexing(
n_docs_options,
retriever_doc_stores,
data_dir,
filename_gold,
filename_negative,
data_s3_url,
embeddings_filenames,
embeddings_dir,
update_json,
save_markdown,
**kwargs,
):
retriever_results = []
for n_docs in n_docs_options:
for retriever_name, doc_store_name in retriever_doc_stores:
logger.info("##### Start indexing run: %s, %s, %s docs ##### ", retriever_name, doc_store_name, n_docs)
try:
doc_store = get_document_store(doc_store_name)
retriever = get_retriever(retriever_name, doc_store, DEVICES)
docs, _ = prepare_data(
data_dir=data_dir,
filename_gold=filename_gold,
filename_negative=filename_negative,
remote_url=data_s3_url,
embeddings_filenames=embeddings_filenames,
embeddings_dir=embeddings_dir,
n_docs=n_docs,
)
tic = perf_counter()
index_to_doc_store(doc_store, docs, retriever)
toc = perf_counter()
indexing_time = toc - tic
print(indexing_time)
retriever_results.append(
{
"retriever": retriever_name,
"doc_store": doc_store_name,
"n_docs": n_docs,
"indexing_time": indexing_time,
"docs_per_second": n_docs / indexing_time,
"date_time": datetime.datetime.now(),
"error": None,
}
)
retriever_df = pd.DataFrame.from_records(retriever_results)
retriever_df = retriever_df.sort_values(by="retriever").sort_values(by="doc_store")
retriever_df.to_csv(index_results_file)
logger.info("Deleting all docs from this run ...")
if isinstance(doc_store, FAISSDocumentStore):
doc_store.session.close()
else:
doc_store.delete_documents(index=doc_index)
doc_store.delete_documents(index=label_index)
if save_markdown:
md_file = index_results_file.replace(".csv", ".md")
with open(md_file, "w") as f:
f.write(str(retriever_df.to_markdown()))
time.sleep(10)
stop_service(doc_store)
del doc_store
del retriever
except Exception:
tb = traceback.format_exc()
logging.error(
f"##### The following Error was raised while running indexing run: {retriever_name}, {doc_store_name}, {n_docs} docs #####"
)
logging.error(tb)
retriever_results.append(
{
"retriever": retriever_name,
"doc_store": doc_store_name,
"n_docs": n_docs,
"indexing_time": 0,
"docs_per_second": 0,
"date_time": datetime.datetime.now(),
"error": str(tb),
}
)
logger.info("Deleting all docs from this run ...")
if isinstance(doc_store, FAISSDocumentStore):
doc_store.session.close()
else:
doc_store.delete_documents(index=doc_index)
doc_store.delete_documents(index=label_index)
time.sleep(10)
stop_service(doc_store)
del doc_store
del retriever
if update_json:
populate_retriever_json()
def benchmark_querying(
n_docs_options,
retriever_doc_stores,
data_dir,
data_s3_url,
filename_gold,
filename_negative,
n_queries,
embeddings_filenames,
embeddings_dir,
update_json,
save_markdown,
wait_write_limit=100,
**kwargs,
):
"""Benchmark the time it takes to perform querying. Doc embeddings are loaded from file."""
retriever_results = []
for n_docs in n_docs_options:
for retriever_name, doc_store_name in retriever_doc_stores:
try:
logger.info("##### Start querying run: %s, %s, %s docs ##### ", retriever_name, doc_store_name, n_docs)
if retriever_name in ["elastic", "sentence_transformers"]:
similarity = "cosine"
else:
similarity = "dot_product"
doc_store = get_document_store(doc_store_name, similarity=similarity)
retriever = get_retriever(retriever_name, doc_store, DEVICES)
add_precomputed = retriever_name in ["dpr"]
# For DPR, precomputed embeddings are loaded from file
docs, labels = prepare_data(
data_dir=data_dir,
filename_gold=filename_gold,
filename_negative=filename_negative,
remote_url=data_s3_url,
embeddings_filenames=embeddings_filenames,
embeddings_dir=embeddings_dir,
n_docs=n_docs,
n_queries=n_queries,
add_precomputed=add_precomputed,
)
logger.info("Start indexing...")
index_to_doc_store(doc_store, docs, retriever, labels)
logger.info("Start queries...")
raw_results = retriever.eval()
results = {
"retriever": retriever_name,
"doc_store": doc_store_name,
"n_docs": n_docs,
"n_queries": raw_results["n_questions"],
"retrieve_time": raw_results["retrieve_time"],
"queries_per_second": raw_results["n_questions"] / raw_results["retrieve_time"],
"seconds_per_query": raw_results["retrieve_time"] / raw_results["n_questions"],
"recall": raw_results["recall"] * 100,
"map": raw_results["map"] * 100,
"top_k": raw_results["top_k"],
"date_time": datetime.datetime.now(),
"error": None,
}
logger.info("Deleting all docs from this run ...")
if isinstance(doc_store, FAISSDocumentStore):
doc_store.session.close()
else:
doc_store.delete_documents(index=doc_index)
doc_store.delete_documents(index=label_index)
time.sleep(5)
stop_service(doc_store)
del doc_store
del retriever
except Exception:
tb = traceback.format_exc()
logging.error(
f"##### The following Error was raised while running querying run: {retriever_name}, {doc_store_name}, {n_docs} docs #####"
)
logging.error(tb)
results = {
"retriever": retriever_name,
"doc_store": doc_store_name,
"n_docs": n_docs,
"n_queries": 0,
"retrieve_time": 0.0,
"queries_per_second": 0.0,
"seconds_per_query": 0.0,
"recall": 0.0,
"map": 0.0,
"top_k": 0,
"date_time": datetime.datetime.now(),
"error": str(tb),
}
logger.info("Deleting all docs from this run ...")
if isinstance(doc_store, FAISSDocumentStore):
doc_store.session.close()
else:
doc_store.delete_documents(index=doc_index)
doc_store.delete_documents(index=label_index)
time.sleep(5)
del doc_store
del retriever
logger.info(results)
retriever_results.append(results)
retriever_df = pd.DataFrame.from_records(retriever_results)
retriever_df = retriever_df.sort_values(by="retriever").sort_values(by="doc_store")
retriever_df.to_csv(query_results_file)
if save_markdown:
md_file = query_results_file.replace(".csv", ".md")
with open(md_file, "w") as f:
f.write(str(retriever_df.to_markdown()))
if update_json:
populate_retriever_json()
def populate_retriever_json():
retriever_overview_data, retriever_map_data, retriever_speed_data = retriever_json(
index_csv=index_results_file, query_csv=query_results_file
)
overview = RETRIEVER_TEMPLATE
overview["data"] = retriever_overview_data
map = RETRIEVER_MAP_TEMPLATE
map["data"] = retriever_map_data
speed = RETRIEVER_SPEED_TEMPLATE
speed["data"] = retriever_speed_data
json.dump(overview, open(overview_json, "w"), indent=4)
json.dump(speed, open(speed_json, "w"), indent=4)
json.dump(map, open(map_json, "w"), indent=4)
def add_precomputed_embeddings(embeddings_dir, embeddings_filenames, docs):
ret = []
id_to_doc = {x.meta["passage_id"]: x for x in docs}
for ef in embeddings_filenames:
logger.info("Adding precomputed embeddings from %s", embeddings_dir + ef)
filename = embeddings_dir + ef
embeds = pickle.load(open(filename, "rb"))
for i, vec in embeds:
if int(i) in id_to_doc:
curr = id_to_doc[int(i)]
curr.embedding = vec
ret.append(curr)
# In the official DPR repo, there are only 20594995 precomputed embeddings for 21015324 wikipedia passages
# If there isn't an embedding for a given doc, we remove it here
ret = [x for x in ret if x.embedding is not None]
logger.info("Embeddings loaded for %s/%s docs", len(ret), len(docs))
return ret
def prepare_data(
data_dir,
filename_gold,
filename_negative,
remote_url,
embeddings_filenames,
embeddings_dir,
n_docs=None,
n_queries=None,
add_precomputed=False,
):
def benchmark_retriever(
indexing_pipeline: Pipeline, querying_pipeline: Pipeline, documents_directory: Path, eval_set: Path
) -> Dict:
"""
filename_gold points to a squad format file.
filename_negative points to a csv file where the first column is doc_id and second is document text.
If add_precomputed is True, this fn will look in the embeddings files for precomputed embeddings to add to each Document
Benchmark indexing and querying on retriever pipelines on a given dataset.
:param indexing_pipeline: Pipeline for indexing documents.
:param querying_pipeline: Pipeline for querying documents.
:param documents_directory: Directory containing files to index.
:param eval_set: Path to evaluation set.
"""
# Indexing
indexing_results = benchmark_indexing(indexing_pipeline, documents_directory)
logging.getLogger("farm").setLevel(logging.INFO)
download_from_url(remote_url + filename_gold, filepath=data_dir + filename_gold)
download_from_url(remote_url + filename_negative, filepath=data_dir + filename_negative)
if add_precomputed:
for embedding_filename in embeddings_filenames:
download_from_url(
remote_url + str(embeddings_dir) + embedding_filename,
filepath=data_dir + str(embeddings_dir) + embedding_filename,
)
logging.getLogger("farm").setLevel(logging.WARN)
# Querying
querying_results = benchmark_querying(querying_pipeline, eval_set)
gold_docs, labels = eval_data_from_json(data_dir + filename_gold)
# Reduce number of docs
gold_docs = gold_docs[:n_docs]
# Remove labels whose gold docs have been removed
doc_ids = [x.id for x in gold_docs]
labels = [x for x in labels if x.document.id in doc_ids]
# Filter labels down to n_queries
selected_queries = list(set(f"{x.document.id} | {x.query}" for x in labels))
selected_queries = selected_queries[:n_queries]
labels = [x for x in labels if f"{x.document.id} | {x.query}" in selected_queries]
n_neg_docs = max(0, n_docs - len(gold_docs))
neg_docs = prepare_negative_passages(data_dir, filename_negative, n_neg_docs)
docs = gold_docs + neg_docs
if add_precomputed:
docs = add_precomputed_embeddings(data_dir + embeddings_dir, embeddings_filenames, docs)
return docs, labels
results = {"indexing": indexing_results, "querying": querying_results}
return results
def prepare_negative_passages(data_dir, filename_negative, n_docs):
if n_docs == 0:
return []
with open(data_dir + filename_negative) as f:
lines = []
_ = f.readline() # Skip column titles line
for _ in range(n_docs):
lines.append(f.readline()[:-1])
def benchmark_indexing(pipeline: Pipeline, documents_directory: Path) -> Dict:
"""
Benchmark indexing.
:param pipeline: Pipeline for indexing documents.
:param documents_directory: Directory containing files to index.
"""
try:
# Indexing Pipelines take a list of file paths as input
file_paths = [str(fp) for fp in documents_directory.iterdir() if fp.is_file() and not fp.name.startswith(".")]
docs = []
for l in lines[:n_docs]:
id, text, title = l.split("\t")
d = {"content": text, "meta": {"passage_id": int(id), "title": title}}
d = Document(**d)
docs.append(d)
return docs
# Indexing
start_time = perf_counter()
pipeline.run_batch(file_paths=file_paths)
end_time = perf_counter()
indexing_time = end_time - start_time
n_docs = len(file_paths)
retrievers = pipeline.get_nodes_by_class(BaseRetriever)
retriever_type = retrievers[0].__class__.__name__ if retrievers else "No component of type BaseRetriever found"
doc_store = pipeline.get_document_store()
doc_store_type = doc_store.__class__.__name__ if doc_store else "No DocumentStore found"
results = {
"retriever": retriever_type,
"doc_store": doc_store_type,
"n_docs": n_docs,
"indexing_time": indexing_time,
"docs_per_second": n_docs / indexing_time,
"date_time": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"error": None,
}
except Exception:
tb = traceback.format_exc()
logging.error("##### The following Error was raised while running indexing run:")
logging.error(tb)
retrievers = pipeline.get_nodes_by_class(BaseRetriever)
retriever_type = retrievers[0].__class__.__name__ if retrievers else "No component of type BaseRetriever found"
doc_store = pipeline.get_document_store()
doc_store_type = doc_store.__class__.__name__ if doc_store else "No DocumentStore found"
results = {
"retriever": retriever_type,
"doc_store": doc_store_type,
"n_docs": 0,
"indexing_time": 0,
"docs_per_second": 0,
"date_time": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"error": str(tb),
}
return results
if __name__ == "__main__":
params, filenames = load_config(config_filename="config.json", ci=True)
benchmark_indexing(**params, **filenames, update_json=True, save_markdown=False)
benchmark_querying(**params, **filenames, update_json=True, save_markdown=False)
def benchmark_querying(pipeline: Pipeline, eval_set: Path) -> Dict:
"""
Benchmark querying. This method should only be called if indexing has already been done.
:param pipeline: Pipeline for querying documents.
:param eval_set: Path to evaluation set.
"""
try:
# Load eval data
labels, queries = load_eval_data(eval_set)
multi_labels = aggregate_labels(labels)
# Run querying
start_time = perf_counter()
predictions = pipeline.run_batch(queries=queries, labels=multi_labels, debug=True)
end_time = perf_counter()
querying_time = end_time - start_time
# Evaluate predictions
eval_result = pipeline._generate_eval_result_from_batch_preds(predictions_batches=predictions)
metrics = eval_result.calculate_metrics()["Retriever"]
retrievers = pipeline.get_nodes_by_class(BaseRetriever)
retriever_type = retrievers[0].__class__.__name__ if retrievers else "No component of type BaseRetriever found"
retriever_top_k = retrievers[0].top_k if retrievers else "No component of type BaseRetriever found"
doc_store = pipeline.get_document_store()
doc_store_type = doc_store.__class__.__name__ if doc_store else "No DocumentStore found"
results = {
"retriever": retriever_type,
"doc_store": doc_store_type,
"n_docs": doc_store.get_document_count(),
"n_queries": len(labels),
"querying_time": querying_time,
"queries_per_second": len(labels) / querying_time,
"seconds_per_query": querying_time / len(labels),
"recall": metrics["recall_single_hit"],
"map": metrics["map"],
"top_k": retriever_top_k,
"date_time": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"error": None,
}
except Exception:
tb = traceback.format_exc()
logging.error("##### The following Error was raised while running querying run:")
logging.error(tb)
retrievers = pipeline.get_nodes_by_class(BaseRetriever)
retriever_type = retrievers[0].__class__.__name__ if retrievers else "No component of type BaseRetriever found"
doc_store = pipeline.get_document_store()
doc_store_type = doc_store.__class__.__name__ if doc_store else "No DocumentStore found"
results = {
"retriever": retriever_type,
"doc_store": doc_store_type,
"n_docs": 0,
"n_queries": 0,
"retrieve_time": 0,
"queries_per_second": 0,
"seconds_per_query": 0,
"recall": 0,
"map": 0,
"top_k": 0,
"date_time": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"error": str(tb),
}
return results

View File

@ -85,6 +85,11 @@ def load_eval_data(eval_set_file: Path):
Load evaluation data from a file.
:param eval_set_file: Path to the evaluation data file.
"""
if not os.path.exists(eval_set_file):
raise FileNotFoundError(f"The file {eval_set_file} does not exist.")
elif os.path.isdir(eval_set_file):
raise IsADirectoryError(f"The path {eval_set_file} is a directory, not a file.")
if eval_set_file.suffix == ".json":
_, labels = eval_data_from_json(str(eval_set_file))
queries = [label.query for label in labels]