mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-11-02 02:39:51 +00:00
refactor: Adapt reader benchmarks (#5005)
This commit is contained in:
parent
75fb6db4d5
commit
796340e788
@ -1,98 +1,70 @@
|
||||
from utils import get_document_store, index_to_doc_store, get_reader
|
||||
from haystack.document_stores.utils import eval_data_from_json
|
||||
from haystack.modeling.data_handler.processor import _download_extract_downstream_data
|
||||
|
||||
from time import perf_counter
|
||||
from typing import Dict
|
||||
from pathlib import Path
|
||||
import pandas as pd
|
||||
from results_to_json import reader as reader_json
|
||||
from templates import READER_TEMPLATE
|
||||
import json
|
||||
import traceback
|
||||
import datetime
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
reader_models_full = [
|
||||
"deepset/roberta-base-squad2",
|
||||
"deepset/minilm-uncased-squad2",
|
||||
"deepset/bert-base-cased-squad2",
|
||||
"deepset/roberta-large-squad2",
|
||||
"deepset/roberta-base-squad2-distilled",
|
||||
"distilbert-base-uncased-distilled-squad",
|
||||
]
|
||||
reader_models_ci = ["deepset/minilm-uncased-squad2"]
|
||||
|
||||
reader_types = ["farm"]
|
||||
data_dir = Path("../../data/squad20")
|
||||
filename = "dev-v2.0.json"
|
||||
# Note that this number is approximate - it was calculated using Bert Base Cased
|
||||
# This number could vary when using a different tokenizer
|
||||
n_total_passages = 12350
|
||||
n_total_docs = 1204
|
||||
|
||||
results_file = "reader_results.csv"
|
||||
|
||||
reader_json_file = "../../docs/_src/benchmarks/reader_performance.json"
|
||||
|
||||
doc_index = "eval_document"
|
||||
label_index = "label"
|
||||
from haystack import Pipeline
|
||||
from haystack.nodes import BaseReader
|
||||
from haystack.utils import aggregate_labels
|
||||
from utils import load_eval_data, get_reader_config
|
||||
|
||||
|
||||
def benchmark_reader(ci=False, update_json=False, save_markdown=False, **kwargs):
|
||||
if ci:
|
||||
reader_models = reader_models_ci
|
||||
else:
|
||||
reader_models = reader_models_full
|
||||
reader_results = []
|
||||
doc_store = get_document_store("elasticsearch")
|
||||
# download squad data
|
||||
_download_extract_downstream_data(input_file=data_dir / filename)
|
||||
docs, labels = eval_data_from_json(data_dir / filename, max_docs=None)
|
||||
def benchmark_reader(pipeline: Pipeline, labels_file: Path) -> Dict:
|
||||
try:
|
||||
labels, queries = load_eval_data(labels_file)
|
||||
eval_labels = aggregate_labels(labels)
|
||||
eval_queries = []
|
||||
eval_docs = []
|
||||
for multi_label in eval_labels:
|
||||
eval_queries.append(multi_label.query)
|
||||
eval_docs.append([multi_label.labels[0].document])
|
||||
|
||||
index_to_doc_store(doc_store, docs, None, labels)
|
||||
for reader_name in reader_models:
|
||||
for reader_type in reader_types:
|
||||
logger.info("##### Start reader run - model: %s, type: %s ##### ", reader_name, reader_type)
|
||||
try:
|
||||
reader = get_reader(reader_name, reader_type)
|
||||
results = reader.eval(
|
||||
document_store=doc_store, doc_index=doc_index, label_index=label_index, device="cuda"
|
||||
)
|
||||
# print(results)
|
||||
results["passages_per_second"] = n_total_passages / results["reader_time"]
|
||||
results["reader"] = reader_name
|
||||
results["error"] = ""
|
||||
reader_results.append(results)
|
||||
except Exception as e:
|
||||
results = {
|
||||
"EM": 0.0,
|
||||
"f1": 0.0,
|
||||
"top_n_accuracy": 0.0,
|
||||
"top_n": 0,
|
||||
"reader_time": 0.0,
|
||||
"passages_per_second": 0.0,
|
||||
"seconds_per_query": 0.0,
|
||||
"reader": reader_name,
|
||||
"error": e,
|
||||
}
|
||||
reader_results.append(results)
|
||||
reader_df = pd.DataFrame.from_records(reader_results)
|
||||
reader_df.to_csv(results_file)
|
||||
if save_markdown:
|
||||
md_file = results_file.replace(".csv", ".md")
|
||||
with open(md_file, "w") as f:
|
||||
f.write(str(reader_df.to_markdown()))
|
||||
doc_store.delete_documents(label_index)
|
||||
doc_store.delete_documents(doc_index)
|
||||
if update_json:
|
||||
populate_reader_json()
|
||||
# Run querying
|
||||
start_time = perf_counter()
|
||||
# We use run_batch instead of eval_batch because we want to get pure inference time
|
||||
predictions = pipeline.run_batch(queries=eval_queries, documents=eval_docs, labels=eval_labels, debug=True)
|
||||
end_time = perf_counter()
|
||||
querying_time = end_time - start_time
|
||||
|
||||
# Evaluate predictions
|
||||
eval_result = pipeline._generate_eval_result_from_batch_preds(predictions_batches=predictions)
|
||||
metrics = eval_result.calculate_metrics()["Reader"]
|
||||
|
||||
def populate_reader_json():
|
||||
reader_results = reader_json()
|
||||
template = READER_TEMPLATE
|
||||
template["data"] = reader_results
|
||||
json.dump(template, open(reader_json_file, "w"), indent=4)
|
||||
reader_type, reader_model, reader_top_k = get_reader_config(pipeline)
|
||||
results = {
|
||||
"reader": {
|
||||
"exact_match": metrics["exact_match"],
|
||||
"f1": metrics["f1"],
|
||||
"n_queries": len(eval_labels),
|
||||
"querying_time": querying_time,
|
||||
"seconds_per_query": querying_time / len(eval_labels),
|
||||
"reader": reader_type,
|
||||
"reader_model": reader_model,
|
||||
"top_k": reader_top_k,
|
||||
"date_time": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
||||
"error": None,
|
||||
}
|
||||
}
|
||||
|
||||
except Exception:
|
||||
tb = traceback.format_exc()
|
||||
logging.error("##### The following Error was raised while running querying run:")
|
||||
logging.error(tb)
|
||||
reader_type, reader_model, reader_top_k = get_reader_config(pipeline)
|
||||
results = {
|
||||
"reader": {
|
||||
"exact_match": 0.0,
|
||||
"f1": 0.0,
|
||||
"n_queries": 0,
|
||||
"querying_time": 0.0,
|
||||
"seconds_per_query": 0.0,
|
||||
"reader": reader_type,
|
||||
"reader_model": reader_model,
|
||||
"date_time": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
||||
"error": str(tb),
|
||||
}
|
||||
}
|
||||
|
||||
if __name__ == "__main__":
|
||||
benchmark_reader(ci=True, update_json=True, save_markdown=True)
|
||||
return results
|
||||
|
||||
@ -4,13 +4,14 @@ import tempfile
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from haystack import Label, Document, Answer
|
||||
from haystack import Label, Document, Answer, Pipeline
|
||||
from haystack.document_stores import eval_data_from_json
|
||||
from haystack.nodes import BaseReader
|
||||
from haystack.utils import launch_es, launch_opensearch, launch_weaviate
|
||||
from haystack.modeling.data_handler.processor import http_get
|
||||
|
||||
import logging
|
||||
from typing import Dict, Union
|
||||
from typing import Dict, Union, Tuple
|
||||
from pathlib import Path
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -120,3 +121,22 @@ def load_eval_data(eval_set_file: Path):
|
||||
)
|
||||
|
||||
return labels, queries
|
||||
|
||||
|
||||
def get_reader_config(pipeline: Pipeline) -> Tuple[str, str, Union[int, str]]:
|
||||
"""
|
||||
Get the configuration of the Reader component of a pipeline.
|
||||
:param pipeline: Pipeline
|
||||
:return: Tuple of Reader type, model name or path, and top_k
|
||||
"""
|
||||
readers = pipeline.get_nodes_by_class(BaseReader)
|
||||
if not readers:
|
||||
message = "No component of type BaseReader found"
|
||||
return message, message, message
|
||||
|
||||
reader = readers[0]
|
||||
reader_type = reader.__class__.__name__
|
||||
reader_model = reader.model_name_or_path
|
||||
reader_top_k = reader.top_k
|
||||
|
||||
return reader_type, reader_model, reader_top_k
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user