refactor: Adapt reader benchmarks (#5005)

This commit is contained in:
bogdankostic 2023-05-26 11:40:35 +02:00 committed by GitHub
parent 75fb6db4d5
commit 796340e788
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 82 additions and 90 deletions

View File

@ -1,98 +1,70 @@
from utils import get_document_store, index_to_doc_store, get_reader from time import perf_counter
from haystack.document_stores.utils import eval_data_from_json from typing import Dict
from haystack.modeling.data_handler.processor import _download_extract_downstream_data
from pathlib import Path from pathlib import Path
import pandas as pd import traceback
from results_to_json import reader as reader_json import datetime
from templates import READER_TEMPLATE
import json
import logging import logging
logger = logging.getLogger(__name__) from haystack import Pipeline
from haystack.nodes import BaseReader
reader_models_full = [ from haystack.utils import aggregate_labels
"deepset/roberta-base-squad2", from utils import load_eval_data, get_reader_config
"deepset/minilm-uncased-squad2",
"deepset/bert-base-cased-squad2",
"deepset/roberta-large-squad2",
"deepset/roberta-base-squad2-distilled",
"distilbert-base-uncased-distilled-squad",
]
reader_models_ci = ["deepset/minilm-uncased-squad2"]
reader_types = ["farm"]
data_dir = Path("../../data/squad20")
filename = "dev-v2.0.json"
# Note that this number is approximate - it was calculated using Bert Base Cased
# This number could vary when using a different tokenizer
n_total_passages = 12350
n_total_docs = 1204
results_file = "reader_results.csv"
reader_json_file = "../../docs/_src/benchmarks/reader_performance.json"
doc_index = "eval_document"
label_index = "label"
def benchmark_reader(ci=False, update_json=False, save_markdown=False, **kwargs): def benchmark_reader(pipeline: Pipeline, labels_file: Path) -> Dict:
if ci: try:
reader_models = reader_models_ci labels, queries = load_eval_data(labels_file)
else: eval_labels = aggregate_labels(labels)
reader_models = reader_models_full eval_queries = []
reader_results = [] eval_docs = []
doc_store = get_document_store("elasticsearch") for multi_label in eval_labels:
# download squad data eval_queries.append(multi_label.query)
_download_extract_downstream_data(input_file=data_dir / filename) eval_docs.append([multi_label.labels[0].document])
docs, labels = eval_data_from_json(data_dir / filename, max_docs=None)
index_to_doc_store(doc_store, docs, None, labels) # Run querying
for reader_name in reader_models: start_time = perf_counter()
for reader_type in reader_types: # We use run_batch instead of eval_batch because we want to get pure inference time
logger.info("##### Start reader run - model: %s, type: %s ##### ", reader_name, reader_type) predictions = pipeline.run_batch(queries=eval_queries, documents=eval_docs, labels=eval_labels, debug=True)
try: end_time = perf_counter()
reader = get_reader(reader_name, reader_type) querying_time = end_time - start_time
results = reader.eval(
document_store=doc_store, doc_index=doc_index, label_index=label_index, device="cuda"
)
# print(results)
results["passages_per_second"] = n_total_passages / results["reader_time"]
results["reader"] = reader_name
results["error"] = ""
reader_results.append(results)
except Exception as e:
results = {
"EM": 0.0,
"f1": 0.0,
"top_n_accuracy": 0.0,
"top_n": 0,
"reader_time": 0.0,
"passages_per_second": 0.0,
"seconds_per_query": 0.0,
"reader": reader_name,
"error": e,
}
reader_results.append(results)
reader_df = pd.DataFrame.from_records(reader_results)
reader_df.to_csv(results_file)
if save_markdown:
md_file = results_file.replace(".csv", ".md")
with open(md_file, "w") as f:
f.write(str(reader_df.to_markdown()))
doc_store.delete_documents(label_index)
doc_store.delete_documents(doc_index)
if update_json:
populate_reader_json()
# Evaluate predictions
eval_result = pipeline._generate_eval_result_from_batch_preds(predictions_batches=predictions)
metrics = eval_result.calculate_metrics()["Reader"]
def populate_reader_json(): reader_type, reader_model, reader_top_k = get_reader_config(pipeline)
reader_results = reader_json() results = {
template = READER_TEMPLATE "reader": {
template["data"] = reader_results "exact_match": metrics["exact_match"],
json.dump(template, open(reader_json_file, "w"), indent=4) "f1": metrics["f1"],
"n_queries": len(eval_labels),
"querying_time": querying_time,
"seconds_per_query": querying_time / len(eval_labels),
"reader": reader_type,
"reader_model": reader_model,
"top_k": reader_top_k,
"date_time": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"error": None,
}
}
except Exception:
tb = traceback.format_exc()
logging.error("##### The following Error was raised while running querying run:")
logging.error(tb)
reader_type, reader_model, reader_top_k = get_reader_config(pipeline)
results = {
"reader": {
"exact_match": 0.0,
"f1": 0.0,
"n_queries": 0,
"querying_time": 0.0,
"seconds_per_query": 0.0,
"reader": reader_type,
"reader_model": reader_model,
"date_time": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"error": str(tb),
}
}
if __name__ == "__main__": return results
benchmark_reader(ci=True, update_json=True, save_markdown=True)

View File

@ -4,13 +4,14 @@ import tempfile
import pandas as pd import pandas as pd
from haystack import Label, Document, Answer from haystack import Label, Document, Answer, Pipeline
from haystack.document_stores import eval_data_from_json from haystack.document_stores import eval_data_from_json
from haystack.nodes import BaseReader
from haystack.utils import launch_es, launch_opensearch, launch_weaviate from haystack.utils import launch_es, launch_opensearch, launch_weaviate
from haystack.modeling.data_handler.processor import http_get from haystack.modeling.data_handler.processor import http_get
import logging import logging
from typing import Dict, Union from typing import Dict, Union, Tuple
from pathlib import Path from pathlib import Path
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@ -120,3 +121,22 @@ def load_eval_data(eval_set_file: Path):
) )
return labels, queries return labels, queries
def get_reader_config(pipeline: Pipeline) -> Tuple[str, str, Union[int, str]]:
"""
Get the configuration of the Reader component of a pipeline.
:param pipeline: Pipeline
:return: Tuple of Reader type, model name or path, and top_k
"""
readers = pipeline.get_nodes_by_class(BaseReader)
if not readers:
message = "No component of type BaseReader found"
return message, message, message
reader = readers[0]
reader_type = reader.__class__.__name__
reader_model = reader.model_name_or_path
reader_top_k = reader.top_k
return reader_type, reader_model, reader_top_k