mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-08-22 15:38:01 +00:00
Update API Reference Pages for v1.0 (#1729)
* Create new API pages and update existing ones * Create query classifier page * Remove Objects suffix
This commit is contained in:
parent
158460504b
commit
81f82b1b95
@ -1,53 +1,95 @@
|
||||
<a name="entity"></a>
|
||||
# Module entity
|
||||
<a name="crawler"></a>
|
||||
# Module crawler
|
||||
|
||||
<a name="entity.EntityExtractor"></a>
|
||||
## EntityExtractor Objects
|
||||
<a name="crawler.Crawler"></a>
|
||||
## Crawler
|
||||
|
||||
```python
|
||||
class EntityExtractor(BaseComponent)
|
||||
class Crawler(BaseComponent)
|
||||
```
|
||||
|
||||
This node is used to extract entities out of documents.
|
||||
The most common use case for this would be as a named entity extractor.
|
||||
The default model used is dslim/bert-base-NER.
|
||||
This node can be placed in a querying pipeline to perform entity extraction on retrieved documents only,
|
||||
or it can be placed in an indexing pipeline so that all documents in the document store have extracted entities.
|
||||
The entities extracted by this Node will populate Document.entities
|
||||
Crawl texts from a website so that we can use them later in Haystack as a corpus for search / question answering etc.
|
||||
|
||||
<a name="entity.EntityExtractor.run"></a>
|
||||
**Example:**
|
||||
```python
|
||||
| from haystack.nodes.connector import Crawler
|
||||
|
|
||||
| crawler = Crawler(output_dir="crawled_files")
|
||||
| # crawl Haystack docs, i.e. all pages that include haystack.deepset.ai/overview/
|
||||
| docs = crawler.crawl(urls=["https://haystack.deepset.ai/overview/get-started"],
|
||||
| filter_urls= ["haystack\.deepset\.ai\/overview\/"])
|
||||
```
|
||||
|
||||
<a name="crawler.Crawler.__init__"></a>
|
||||
#### \_\_init\_\_
|
||||
|
||||
```python
|
||||
| __init__(output_dir: str, urls: Optional[List[str]] = None, crawler_depth: int = 1, filter_urls: Optional[List] = None, overwrite_existing_files=True)
|
||||
```
|
||||
|
||||
Init object with basic params for crawling (can be overwritten later).
|
||||
|
||||
**Arguments**:
|
||||
|
||||
- `output_dir`: Path for the directory to store files
|
||||
- `urls`: List of http(s) address(es) (can also be supplied later when calling crawl())
|
||||
- `crawler_depth`: How many sublinks to follow from the initial list of URLs. Current options:
|
||||
0: Only initial list of urls
|
||||
1: Follow links found on the initial URLs (but no further)
|
||||
- `filter_urls`: Optional list of regular expressions that the crawled URLs must comply with.
|
||||
All URLs not matching at least one of the regular expressions will be dropped.
|
||||
- `overwrite_existing_files`: Whether to overwrite existing files in output_dir with new content
|
||||
|
||||
<a name="crawler.Crawler.crawl"></a>
|
||||
#### crawl
|
||||
|
||||
```python
|
||||
| crawl(output_dir: Union[str, Path, None] = None, urls: Optional[List[str]] = None, crawler_depth: Optional[int] = None, filter_urls: Optional[List] = None, overwrite_existing_files: Optional[bool] = None) -> List[Path]
|
||||
```
|
||||
|
||||
Craw URL(s), extract the text from the HTML, create a Haystack Document object out of it and save it (one JSON
|
||||
file per URL, including text and basic meta data).
|
||||
You can optionally specify via `filter_urls` to only crawl URLs that match a certain pattern.
|
||||
All parameters are optional here and only meant to overwrite instance attributes at runtime.
|
||||
If no parameters are provided to this method, the instance attributes that were passed during __init__ will be used.
|
||||
|
||||
**Arguments**:
|
||||
|
||||
- `output_dir`: Path for the directory to store files
|
||||
- `urls`: List of http addresses or single http address
|
||||
- `crawler_depth`: How many sublinks to follow from the initial list of URLs. Current options:
|
||||
0: Only initial list of urls
|
||||
1: Follow links found on the initial URLs (but no further)
|
||||
- `filter_urls`: Optional list of regular expressions that the crawled URLs must comply with.
|
||||
All URLs not matching at least one of the regular expressions will be dropped.
|
||||
- `overwrite_existing_files`: Whether to overwrite existing files in output_dir with new content
|
||||
|
||||
**Returns**:
|
||||
|
||||
List of paths where the crawled webpages got stored
|
||||
|
||||
<a name="crawler.Crawler.run"></a>
|
||||
#### run
|
||||
|
||||
```python
|
||||
| run(documents: Optional[Union[List[Document], List[dict]]] = None) -> Tuple[Dict, str]
|
||||
| run(output_dir: Union[str, Path, None] = None, urls: Optional[List[str]] = None, crawler_depth: Optional[int] = None, filter_urls: Optional[List] = None, overwrite_existing_files: Optional[bool] = None, return_documents: Optional[bool] = False) -> Tuple[Dict, str]
|
||||
```
|
||||
|
||||
This is the method called when this node is used in a pipeline
|
||||
Method to be executed when the Crawler is used as a Node within a Haystack pipeline.
|
||||
|
||||
<a name="entity.EntityExtractor.extract"></a>
|
||||
#### extract
|
||||
**Arguments**:
|
||||
|
||||
```python
|
||||
| extract(text)
|
||||
```
|
||||
- `output_dir`: Path for the directory to store files
|
||||
- `urls`: List of http addresses or single http address
|
||||
- `crawler_depth`: How many sublinks to follow from the initial list of URLs. Current options:
|
||||
0: Only initial list of urls
|
||||
1: Follow links found on the initial URLs (but no further)
|
||||
- `filter_urls`: Optional list of regular expressions that the crawled URLs must comply with.
|
||||
All URLs not matching at least one of the regular expressions will be dropped.
|
||||
- `overwrite_existing_files`: Whether to overwrite existing files in output_dir with new content
|
||||
- `return_documents`: Return json files content
|
||||
|
||||
This function can be called to perform entity extraction when using the node in isolation.
|
||||
**Returns**:
|
||||
|
||||
<a name="entity.simplify_ner_for_qa"></a>
|
||||
#### simplify\_ner\_for\_qa
|
||||
|
||||
```python
|
||||
simplify_ner_for_qa(output)
|
||||
```
|
||||
|
||||
Returns a simplified version of the output dictionary
|
||||
with the following structure:
|
||||
[
|
||||
{
|
||||
answer: { ... }
|
||||
entities: [ { ... }, {} ]
|
||||
}
|
||||
]
|
||||
The entities included are only the ones that overlap with
|
||||
the answer itself.
|
||||
Tuple({"paths": List of filepaths, ...}, Name of output edge)
|
||||
|
||||
|
@ -2,7 +2,7 @@
|
||||
# Module base
|
||||
|
||||
<a name="base.BaseKnowledgeGraph"></a>
|
||||
## BaseKnowledgeGraph Objects
|
||||
## BaseKnowledgeGraph
|
||||
|
||||
```python
|
||||
class BaseKnowledgeGraph(BaseComponent)
|
||||
@ -11,7 +11,7 @@ class BaseKnowledgeGraph(BaseComponent)
|
||||
Base class for implementing Knowledge Graphs.
|
||||
|
||||
<a name="base.BaseDocumentStore"></a>
|
||||
## BaseDocumentStore Objects
|
||||
## BaseDocumentStore
|
||||
|
||||
```python
|
||||
class BaseDocumentStore(BaseComponent)
|
||||
@ -150,7 +150,7 @@ Batch elements of an iterable into fixed-length chunks or blocks.
|
||||
# Module elasticsearch
|
||||
|
||||
<a name="elasticsearch.ElasticsearchDocumentStore"></a>
|
||||
## ElasticsearchDocumentStore Objects
|
||||
## ElasticsearchDocumentStore
|
||||
|
||||
```python
|
||||
class ElasticsearchDocumentStore(BaseDocumentStore)
|
||||
@ -530,7 +530,7 @@ Delete labels in an index. All labels are deleted if no filters are passed.
|
||||
None
|
||||
|
||||
<a name="elasticsearch.OpenSearchDocumentStore"></a>
|
||||
## OpenSearchDocumentStore Objects
|
||||
## OpenSearchDocumentStore
|
||||
|
||||
```python
|
||||
class OpenSearchDocumentStore(ElasticsearchDocumentStore)
|
||||
@ -564,7 +564,7 @@ Find the document that is most similar to the provided `query_emb` by using a ve
|
||||
|
||||
|
||||
<a name="elasticsearch.OpenDistroElasticsearchDocumentStore"></a>
|
||||
## OpenDistroElasticsearchDocumentStore Objects
|
||||
## OpenDistroElasticsearchDocumentStore
|
||||
|
||||
```python
|
||||
class OpenDistroElasticsearchDocumentStore(OpenSearchDocumentStore)
|
||||
@ -576,7 +576,7 @@ A DocumentStore which has an Open Distro for Elasticsearch service behind it.
|
||||
# Module memory
|
||||
|
||||
<a name="memory.InMemoryDocumentStore"></a>
|
||||
## InMemoryDocumentStore Objects
|
||||
## InMemoryDocumentStore
|
||||
|
||||
```python
|
||||
class InMemoryDocumentStore(BaseDocumentStore)
|
||||
@ -857,7 +857,7 @@ None
|
||||
# Module sql
|
||||
|
||||
<a name="sql.SQLDocumentStore"></a>
|
||||
## SQLDocumentStore Objects
|
||||
## SQLDocumentStore
|
||||
|
||||
```python
|
||||
class SQLDocumentStore(BaseDocumentStore)
|
||||
@ -1099,7 +1099,7 @@ None
|
||||
# Module faiss
|
||||
|
||||
<a name="faiss.FAISSDocumentStore"></a>
|
||||
## FAISSDocumentStore Objects
|
||||
## FAISSDocumentStore
|
||||
|
||||
```python
|
||||
class FAISSDocumentStore(SQLDocumentStore)
|
||||
@ -1368,7 +1368,7 @@ Note: In order to have a correct mapping from FAISS to SQL,
|
||||
# Module milvus
|
||||
|
||||
<a name="milvus.MilvusDocumentStore"></a>
|
||||
## MilvusDocumentStore Objects
|
||||
## MilvusDocumentStore
|
||||
|
||||
```python
|
||||
class MilvusDocumentStore(SQLDocumentStore)
|
||||
@ -1660,7 +1660,7 @@ Return the count of embeddings in the document store.
|
||||
# Module weaviate
|
||||
|
||||
<a name="weaviate.WeaviateDocumentStore"></a>
|
||||
## WeaviateDocumentStore Objects
|
||||
## WeaviateDocumentStore
|
||||
|
||||
```python
|
||||
class WeaviateDocumentStore(BaseDocumentStore)
|
||||
@ -1947,7 +1947,7 @@ None
|
||||
# Module graphdb
|
||||
|
||||
<a name="graphdb.GraphDBKnowledgeGraph"></a>
|
||||
## GraphDBKnowledgeGraph Objects
|
||||
## GraphDBKnowledgeGraph
|
||||
|
||||
```python
|
||||
class GraphDBKnowledgeGraph(BaseKnowledgeGraph)
|
||||
|
53
docs/_src/api/api/extractor.md
Normal file
53
docs/_src/api/api/extractor.md
Normal file
@ -0,0 +1,53 @@
|
||||
<a name="entity"></a>
|
||||
# Module entity
|
||||
|
||||
<a name="entity.EntityExtractor"></a>
|
||||
## EntityExtractor
|
||||
|
||||
```python
|
||||
class EntityExtractor(BaseComponent)
|
||||
```
|
||||
|
||||
This node is used to extract entities out of documents.
|
||||
The most common use case for this would be as a named entity extractor.
|
||||
The default model used is dslim/bert-base-NER.
|
||||
This node can be placed in a querying pipeline to perform entity extraction on retrieved documents only,
|
||||
or it can be placed in an indexing pipeline so that all documents in the document store have extracted entities.
|
||||
The entities extracted by this Node will populate Document.entities
|
||||
|
||||
<a name="entity.EntityExtractor.run"></a>
|
||||
#### run
|
||||
|
||||
```python
|
||||
| run(documents: Optional[Union[List[Document], List[dict]]] = None) -> Tuple[Dict, str]
|
||||
```
|
||||
|
||||
This is the method called when this node is used in a pipeline
|
||||
|
||||
<a name="entity.EntityExtractor.extract"></a>
|
||||
#### extract
|
||||
|
||||
```python
|
||||
| extract(text)
|
||||
```
|
||||
|
||||
This function can be called to perform entity extraction when using the node in isolation.
|
||||
|
||||
<a name="entity.simplify_ner_for_qa"></a>
|
||||
#### simplify\_ner\_for\_qa
|
||||
|
||||
```python
|
||||
simplify_ner_for_qa(output)
|
||||
```
|
||||
|
||||
Returns a simplified version of the output dictionary
|
||||
with the following structure:
|
||||
[
|
||||
{
|
||||
answer: { ... }
|
||||
entities: [ { ... }, {} ]
|
||||
}
|
||||
]
|
||||
The entities included are only the ones that overlap with
|
||||
the answer itself.
|
||||
|
@ -2,7 +2,7 @@
|
||||
# Module file\_type
|
||||
|
||||
<a name="file_type.FileTypeClassifier"></a>
|
||||
## FileTypeClassifier Objects
|
||||
## FileTypeClassifier
|
||||
|
||||
```python
|
||||
class FileTypeClassifier(BaseComponent)
|
||||
|
@ -2,6 +2,7 @@
|
||||
|
||||
# Purpose : Automate the generation of docstrings
|
||||
|
||||
pydoc-markdown pydoc-markdown-primitives.yml
|
||||
pydoc-markdown pydoc-markdown-document-store.yml
|
||||
pydoc-markdown pydoc-markdown-file-converters.yml
|
||||
pydoc-markdown pydoc-markdown-file-classifier.yml
|
||||
@ -18,5 +19,6 @@ pydoc-markdown pydoc-markdown-pipelines.yml
|
||||
pydoc-markdown pydoc-markdown-evaluation.yml
|
||||
pydoc-markdown pydoc-markdown-ranker.yml
|
||||
pydoc-markdown pydoc-markdown-question-generator.yml
|
||||
pydoc-markdown pydoc-markdown-query-classifier.yml
|
||||
pydoc-markdown pydoc-markdown-document-classifier.yml
|
||||
|
||||
|
@ -2,7 +2,7 @@
|
||||
# Module base
|
||||
|
||||
<a name="base.BaseGenerator"></a>
|
||||
## BaseGenerator Objects
|
||||
## BaseGenerator
|
||||
|
||||
```python
|
||||
class BaseGenerator(BaseComponent)
|
||||
@ -34,7 +34,7 @@ Generated answers plus additional infos in a dict
|
||||
# Module transformers
|
||||
|
||||
<a name="transformers.RAGenerator"></a>
|
||||
## RAGenerator Objects
|
||||
## RAGenerator
|
||||
|
||||
```python
|
||||
class RAGenerator(BaseGenerator)
|
||||
@ -140,7 +140,7 @@ Generated answers plus additional infos in a dict like this:
|
||||
```
|
||||
|
||||
<a name="transformers.Seq2SeqGenerator"></a>
|
||||
## Seq2SeqGenerator Objects
|
||||
## Seq2SeqGenerator
|
||||
|
||||
```python
|
||||
class Seq2SeqGenerator(BaseGenerator)
|
||||
|
47
docs/_src/api/api/other.md
Normal file
47
docs/_src/api/api/other.md
Normal file
@ -0,0 +1,47 @@
|
||||
<a name="docs2answers"></a>
|
||||
# Module docs2answers
|
||||
|
||||
<a name="docs2answers.Docs2Answers"></a>
|
||||
## Docs2Answers
|
||||
|
||||
```python
|
||||
class Docs2Answers(BaseComponent)
|
||||
```
|
||||
|
||||
This Node is used to convert retrieved documents into predicted answers format.
|
||||
It is useful for situations where you are calling a Retriever only pipeline via REST API.
|
||||
This ensures that your output is in a compatible format.
|
||||
|
||||
<a name="join_docs"></a>
|
||||
# Module join\_docs
|
||||
|
||||
<a name="join_docs.JoinDocuments"></a>
|
||||
## JoinDocuments
|
||||
|
||||
```python
|
||||
class JoinDocuments(BaseComponent)
|
||||
```
|
||||
|
||||
A node to join documents outputted by multiple retriever nodes.
|
||||
|
||||
The node allows multiple join modes:
|
||||
* concatenate: combine the documents from multiple nodes. Any duplicate documents are discarded.
|
||||
* merge: merge scores of documents from multiple nodes. Optionally, each input score can be given a different
|
||||
`weight` & a `top_k` limit can be set. This mode can also be used for "reranking" retrieved documents.
|
||||
|
||||
<a name="join_docs.JoinDocuments.__init__"></a>
|
||||
#### \_\_init\_\_
|
||||
|
||||
```python
|
||||
| __init__(join_mode: str = "concatenate", weights: Optional[List[float]] = None, top_k_join: Optional[int] = None)
|
||||
```
|
||||
|
||||
**Arguments**:
|
||||
|
||||
- `join_mode`: `concatenate` to combine documents from multiple retrievers or `merge` to aggregate scores of
|
||||
individual documents.
|
||||
- `weights`: A node-wise list(length of list must be equal to the number of input nodes) of weights for
|
||||
adjusting document scores when using the `merge` join_mode. By default, equal weight is given
|
||||
to each retriever score. This param is not compatible with the `concatenate` join_mode.
|
||||
- `top_k_join`: Limit documents to top_k based on the resulting scores of the join.
|
||||
|
@ -2,7 +2,7 @@
|
||||
# Module base
|
||||
|
||||
<a name="base.BasePreProcessor"></a>
|
||||
## BasePreProcessor Objects
|
||||
## BasePreProcessor
|
||||
|
||||
```python
|
||||
class BasePreProcessor(BaseComponent)
|
||||
@ -21,7 +21,7 @@ Perform document cleaning and splitting. Takes a single document as input and re
|
||||
# Module preprocessor
|
||||
|
||||
<a name="preprocessor.PreProcessor"></a>
|
||||
## PreProcessor Objects
|
||||
## PreProcessor
|
||||
|
||||
```python
|
||||
class PreProcessor(BasePreProcessor)
|
||||
|
232
docs/_src/api/api/primitives.md
Normal file
232
docs/_src/api/api/primitives.md
Normal file
@ -0,0 +1,232 @@
|
||||
<a name="schema"></a>
|
||||
# Module schema
|
||||
|
||||
<a name="schema.Document"></a>
|
||||
## Document
|
||||
|
||||
```python
|
||||
@dataclass
|
||||
class Document()
|
||||
```
|
||||
|
||||
<a name="schema.Document.__init__"></a>
|
||||
#### \_\_init\_\_
|
||||
|
||||
```python
|
||||
| __init__(content: Union[str, pd.DataFrame], content_type: Literal["text", "table", "image"] = "text", id: Optional[str] = None, score: Optional[float] = None, meta: Dict[str, Any] = None, embedding: Optional[np.ndarray] = None, id_hash_keys: Optional[List[str]] = None)
|
||||
```
|
||||
|
||||
One of the core data classes in Haystack. It's used to represent documents / passages in a standardized way within Haystack.
|
||||
Documents are stored in DocumentStores, are returned by Retrievers, are the input for Readers and are used in
|
||||
many other places that manipulate or interact with document-level data.
|
||||
|
||||
Note: There can be multiple Documents originating from one file (e.g. PDF), if you split the text
|
||||
into smaller passages. We'll have one Document per passage in this case.
|
||||
|
||||
Each document has a unique ID. This can be supplied by the user or generated automatically.
|
||||
It's particularly helpful for handling of duplicates and referencing documents in other objects (e.g. Labels)
|
||||
|
||||
There's an easy option to convert from/to dicts via `from_dict()` and `to_dict`.
|
||||
|
||||
**Arguments**:
|
||||
|
||||
- `content`: Content of the document. For most cases, this will be text, but it can be a table or image.
|
||||
- `content_type`: One of "image", "table" or "image". Haystack components can use this to adjust their
|
||||
handling of Documents and check compatibility.
|
||||
- `id`: Unique ID for the document. If not supplied by the user, we'll generate one automatically by
|
||||
creating a hash from the supplied text. This behaviour can be further adjusted by `id_hash_keys`.
|
||||
- `score`: The relevance score of the Document determined by a model (e.g. Retriever or Re-Ranker).
|
||||
In the range of [0,1], where 1 means extremely relevant.
|
||||
- `meta`: Meta fields for a document like name, url, or author in the form of a custom dict (any keys and values allowed).
|
||||
- `embedding`: Vector encoding of the text
|
||||
- `id_hash_keys`: Generate the document id from a custom list of strings.
|
||||
If you want ensure you don't have duplicate documents in your DocumentStore but texts are
|
||||
not unique, you can provide custom strings here that will be used (e.g. ["filename_xy", "text_of_doc"].
|
||||
|
||||
<a name="schema.Document.to_dict"></a>
|
||||
#### to\_dict
|
||||
|
||||
```python
|
||||
| to_dict(field_map={}) -> Dict
|
||||
```
|
||||
|
||||
Convert Document to dict. An optional field_map can be supplied to change the names of the keys in the
|
||||
resulting dict. This way you can work with standardized Document objects in Haystack, but adjust the format that
|
||||
they are serialized / stored in other places (e.g. elasticsearch)
|
||||
Example:
|
||||
| doc = Document(content="some text", content_type="text")
|
||||
| doc.to_dict(field_map={"custom_content_field": "content"})
|
||||
| >>> {"custom_content_field": "some text", content_type": "text"}
|
||||
|
||||
**Arguments**:
|
||||
|
||||
- `field_map`: Dict with keys being the custom target keys and values being the standard Document attributes
|
||||
|
||||
**Returns**:
|
||||
|
||||
dict with content of the Document
|
||||
|
||||
<a name="schema.Document.from_dict"></a>
|
||||
#### from\_dict
|
||||
|
||||
```python
|
||||
| @classmethod
|
||||
| from_dict(cls, dict, field_map={})
|
||||
```
|
||||
|
||||
Create Document from dict. An optional field_map can be supplied to adjust for custom names of the keys in the
|
||||
input dict. This way you can work with standardized Document objects in Haystack, but adjust the format that
|
||||
they are serialized / stored in other places (e.g. elasticsearch)
|
||||
Example:
|
||||
| my_dict = {"custom_content_field": "some text", content_type": "text"}
|
||||
| Document.from_dict(my_dict, field_map={"custom_content_field": "content"})
|
||||
|
||||
**Arguments**:
|
||||
|
||||
- `field_map`: Dict with keys being the custom target keys and values being the standard Document attributes
|
||||
|
||||
**Returns**:
|
||||
|
||||
dict with content of the Document
|
||||
|
||||
<a name="schema.Document.__lt__"></a>
|
||||
#### \_\_lt\_\_
|
||||
|
||||
```python
|
||||
| __lt__(other)
|
||||
```
|
||||
|
||||
Enable sorting of Documents by score
|
||||
|
||||
<a name="schema.Span"></a>
|
||||
## Span
|
||||
|
||||
```python
|
||||
@dataclass
|
||||
class Span()
|
||||
```
|
||||
|
||||
<a name="schema.Span.end"></a>
|
||||
#### end
|
||||
|
||||
Defining a sequence of characters (Text span) or cells (Table span) via start and end index.
|
||||
For extractive QA: Character where answer starts/ends
|
||||
For TableQA: Cell where the answer starts/ends (counted from top left to bottom right of table)
|
||||
|
||||
**Arguments**:
|
||||
|
||||
- `start`: Position where the span starts
|
||||
- `end`: Position where the spand ends
|
||||
|
||||
<a name="schema.Answer"></a>
|
||||
## Answer
|
||||
|
||||
```python
|
||||
@dataclass
|
||||
class Answer()
|
||||
```
|
||||
|
||||
<a name="schema.Answer.meta"></a>
|
||||
#### meta
|
||||
|
||||
The fundamental object in Haystack to represent any type of Answers (e.g. extractive QA, generative QA or TableQA).
|
||||
For example, it's used within some Nodes like the Reader, but also in the REST API.
|
||||
|
||||
**Arguments**:
|
||||
|
||||
- `answer`: The answer string. If there's no possible answer (aka "no_answer" or "is_impossible) this will be an empty string.
|
||||
- `type`: One of ("generative", "extractive", "other"): Whether this answer comes from an extractive model
|
||||
(i.e. we can locate an exact answer string in one of the documents) or from a generative model
|
||||
(i.e. no pointer to a specific document, no offsets ...).
|
||||
- `score`: The relevance score of the Answer determined by a model (e.g. Reader or Generator).
|
||||
In the range of [0,1], where 1 means extremely relevant.
|
||||
- `context`: The related content that was used to create the answer (i.e. a text passage, part of a table, image ...)
|
||||
- `offsets_in_document`: List of `Span` objects with start and end positions of the answer **in the
|
||||
document** (as stored in the document store).
|
||||
For extractive QA: Character where answer starts => `Answer.offsets_in_document[0].start
|
||||
For TableQA: Cell where the answer starts (counted from top left to bottom right of table) => `Answer.offsets_in_document[0].start
|
||||
(Note that in TableQA there can be multiple cell ranges that are relevant for the answer, thus there can be multiple `Spans` here)
|
||||
- `offsets_in_context`: List of `Span` objects with start and end positions of the answer **in the
|
||||
context** (i.e. the surrounding text/table of a certain window size).
|
||||
For extractive QA: Character where answer starts => `Answer.offsets_in_document[0].start
|
||||
For TableQA: Cell where the answer starts (counted from top left to bottom right of table) => `Answer.offsets_in_document[0].start
|
||||
(Note that in TableQA there can be multiple cell ranges that are relevant for the answer, thus there can be multiple `Spans` here)
|
||||
- `document_id`: ID of the document that the answer was located it (if any)
|
||||
- `meta`: Dict that can be used to associate any kind of custom meta data with the answer.
|
||||
In extractive QA, this will carry the meta data of the document where the answer was found.
|
||||
|
||||
<a name="schema.Answer.__lt__"></a>
|
||||
#### \_\_lt\_\_
|
||||
|
||||
```python
|
||||
| __lt__(other)
|
||||
```
|
||||
|
||||
Enable sorting of Answers by score
|
||||
|
||||
<a name="schema.Label"></a>
|
||||
## Label
|
||||
|
||||
```python
|
||||
@dataclass
|
||||
class Label()
|
||||
```
|
||||
|
||||
<a name="schema.Label.__init__"></a>
|
||||
#### \_\_init\_\_
|
||||
|
||||
```python
|
||||
| __init__(query: str, document: Document, is_correct_answer: bool, is_correct_document: bool, origin: Literal["user-feedback", "gold-label"], answer: Optional[Answer], id: Optional[str] = None, no_answer: Optional[bool] = None, pipeline_id: Optional[str] = None, created_at: Optional[str] = None, updated_at: Optional[str] = None, meta: Optional[dict] = None)
|
||||
```
|
||||
|
||||
Object used to represent label/feedback in a standardized way within Haystack.
|
||||
This includes labels from dataset like SQuAD, annotations from labeling tools,
|
||||
or, user-feedback from the Haystack REST API.
|
||||
|
||||
**Arguments**:
|
||||
|
||||
- `query`: the question (or query) for finding answers.
|
||||
- `document`:
|
||||
- `answer`: the answer object.
|
||||
- `is_correct_answer`: whether the sample is positive or negative.
|
||||
- `is_correct_document`: in case of negative sample(is_correct_answer is False), there could be two cases;
|
||||
incorrect answer but correct document & incorrect document. This flag denotes if
|
||||
the returned document was correct.
|
||||
- `origin`: the source for the labels. It can be used to later for filtering.
|
||||
- `id`: Unique ID used within the DocumentStore. If not supplied, a uuid will be generated automatically.
|
||||
- `no_answer`: whether the question in unanswerable.
|
||||
- `pipeline_id`: pipeline identifier (any str) that was involved for generating this label (in-case of user feedback).
|
||||
- `created_at`: Timestamp of creation with format yyyy-MM-dd HH:mm:ss.
|
||||
Generate in Python via time.strftime("%Y-%m-%d %H:%M:%S").
|
||||
- `created_at`: Timestamp of update with format yyyy-MM-dd HH:mm:ss.
|
||||
Generate in Python via time.strftime("%Y-%m-%d %H:%M:%S")
|
||||
- `meta`: Meta fields like "annotator_name" in the form of a custom dict (any keys and values allowed).
|
||||
|
||||
<a name="schema.MultiLabel"></a>
|
||||
## MultiLabel
|
||||
|
||||
```python
|
||||
@dataclass
|
||||
class MultiLabel()
|
||||
```
|
||||
|
||||
<a name="schema.MultiLabel.__init__"></a>
|
||||
#### \_\_init\_\_
|
||||
|
||||
```python
|
||||
| __init__(labels: List[Label], drop_negative_labels=False, drop_no_answers=False)
|
||||
```
|
||||
|
||||
There are often multiple `Labels` associated with a single query. For example, there can be multiple annotated
|
||||
answers for one question or multiple documents contain the information you want for a query.
|
||||
This class is "syntactic sugar" that simplifies the work with such a list of related Labels.
|
||||
It stored the original labels in MultiLabel.labels and provides additional aggregated attributes that are
|
||||
automatically created at init time. For example, MultiLabel.no_answer allows you to easily access if any of the
|
||||
underlying Labels provided a text answer and therefore demonstrates that there is indeed a possible answer.
|
||||
|
||||
**Arguments**:
|
||||
|
||||
- `labels`: A list lof labels that belong to a similar query and shall be "grouped" together
|
||||
- `drop_negative_labels`: Whether to drop negative labels from that group (e.g. thumbs down feedback from UI)
|
||||
- `drop_no_answers`: Whether to drop labels that specify the answer is impossible
|
||||
|
@ -11,7 +11,7 @@ processor:
|
||||
- skip_empty_modules: true
|
||||
renderer:
|
||||
type: markdown
|
||||
descriptive_class_title: true
|
||||
descriptive_class_title: false
|
||||
descriptive_module_title: true
|
||||
add_method_class_prefix: false
|
||||
add_member_class_prefix: false
|
||||
|
@ -11,7 +11,7 @@ processor:
|
||||
- skip_empty_modules: true
|
||||
renderer:
|
||||
type: markdown
|
||||
descriptive_class_title: true
|
||||
descriptive_class_title: false
|
||||
descriptive_module_title: true
|
||||
add_method_class_prefix: false
|
||||
add_member_class_prefix: false
|
||||
|
@ -11,7 +11,7 @@ processor:
|
||||
- skip_empty_modules: true
|
||||
renderer:
|
||||
type: markdown
|
||||
descriptive_class_title: true
|
||||
descriptive_class_title: false
|
||||
descriptive_module_title: true
|
||||
add_method_class_prefix: false
|
||||
add_member_class_prefix: false
|
||||
|
@ -11,7 +11,7 @@ processor:
|
||||
- skip_empty_modules: true
|
||||
renderer:
|
||||
type: markdown
|
||||
descriptive_class_title: true
|
||||
descriptive_class_title: false
|
||||
descriptive_module_title: true
|
||||
add_method_class_prefix: false
|
||||
add_member_class_prefix: false
|
||||
|
@ -11,7 +11,7 @@ processor:
|
||||
- skip_empty_modules: true
|
||||
renderer:
|
||||
type: markdown
|
||||
descriptive_class_title: true
|
||||
descriptive_class_title: false
|
||||
descriptive_module_title: true
|
||||
add_method_class_prefix: false
|
||||
add_member_class_prefix: false
|
||||
|
@ -11,8 +11,8 @@ processor:
|
||||
- skip_empty_modules: true
|
||||
renderer:
|
||||
type: markdown
|
||||
descriptive_class_title: true
|
||||
descriptive_class_title: false
|
||||
descriptive_module_title: true
|
||||
add_method_class_prefix: false
|
||||
add_member_class_prefix: false
|
||||
filename: crawler.md
|
||||
filename: extractor.md
|
||||
|
@ -11,7 +11,7 @@ processor:
|
||||
- skip_empty_modules: true
|
||||
renderer:
|
||||
type: markdown
|
||||
descriptive_class_title: true
|
||||
descriptive_class_title: false
|
||||
descriptive_module_title: true
|
||||
add_method_class_prefix: false
|
||||
add_member_class_prefix: false
|
||||
|
@ -11,7 +11,7 @@ processor:
|
||||
- skip_empty_modules: true
|
||||
renderer:
|
||||
type: markdown
|
||||
descriptive_class_title: true
|
||||
descriptive_class_title: false
|
||||
descriptive_module_title: true
|
||||
add_method_class_prefix: false
|
||||
add_member_class_prefix: false
|
||||
|
@ -11,8 +11,8 @@ processor:
|
||||
- skip_empty_modules: true
|
||||
renderer:
|
||||
type: markdown
|
||||
descriptive_class_title: true
|
||||
descriptive_class_title: false
|
||||
descriptive_module_title: true
|
||||
add_method_class_prefix: false
|
||||
add_member_class_prefix: false
|
||||
filename: ranker.md
|
||||
filename: other.md
|
||||
|
@ -11,7 +11,7 @@ processor:
|
||||
- skip_empty_modules: true
|
||||
renderer:
|
||||
type: markdown
|
||||
descriptive_class_title: true
|
||||
descriptive_class_title: false
|
||||
descriptive_module_title: true
|
||||
add_method_class_prefix: false
|
||||
add_member_class_prefix: false
|
||||
|
@ -11,7 +11,7 @@ processor:
|
||||
- skip_empty_modules: true
|
||||
renderer:
|
||||
type: markdown
|
||||
descriptive_class_title: true
|
||||
descriptive_class_title: false
|
||||
descriptive_module_title: true
|
||||
add_method_class_prefix: false
|
||||
add_member_class_prefix: false
|
||||
|
18
docs/_src/api/api/pydoc-markdown-primitives.yml
Normal file
18
docs/_src/api/api/pydoc-markdown-primitives.yml
Normal file
@ -0,0 +1,18 @@
|
||||
loaders:
|
||||
- type: python
|
||||
search_path: [../../../../haystack/]
|
||||
modules: ['schema']
|
||||
ignore_when_discovered: ['__init__']
|
||||
processor:
|
||||
- type: filter
|
||||
expression: not name.startswith('_') and default()
|
||||
- documented_only: true
|
||||
- do_not_filter_modules: false
|
||||
- skip_empty_modules: true
|
||||
renderer:
|
||||
type: markdown
|
||||
descriptive_class_title: false
|
||||
descriptive_module_title: true
|
||||
add_method_class_prefix: false
|
||||
add_member_class_prefix: false
|
||||
filename: primitives.md
|
18
docs/_src/api/api/pydoc-markdown-query-classifier.yml
Normal file
18
docs/_src/api/api/pydoc-markdown-query-classifier.yml
Normal file
@ -0,0 +1,18 @@
|
||||
loaders:
|
||||
- type: python
|
||||
search_path: [../../../../haystack/nodes/query_classifier]
|
||||
modules: ['base', 'sklearn', 'transformers']
|
||||
ignore_when_discovered: ['__init__']
|
||||
processor:
|
||||
- type: filter
|
||||
expression: not name.startswith('_') and default()
|
||||
- documented_only: true
|
||||
- do_not_filter_modules: false
|
||||
- skip_empty_modules: true
|
||||
renderer:
|
||||
type: markdown
|
||||
descriptive_class_title: false
|
||||
descriptive_module_title: true
|
||||
add_method_class_prefix: false
|
||||
add_member_class_prefix: false
|
||||
filename: query_classifier.md
|
@ -11,7 +11,7 @@ processor:
|
||||
- skip_empty_modules: true
|
||||
renderer:
|
||||
type: markdown
|
||||
descriptive_class_title: true
|
||||
descriptive_class_title: false
|
||||
descriptive_module_title: true
|
||||
add_method_class_prefix: false
|
||||
add_member_class_prefix: false
|
||||
|
@ -11,7 +11,7 @@ processor:
|
||||
- skip_empty_modules: true
|
||||
renderer:
|
||||
type: markdown
|
||||
descriptive_class_title: true
|
||||
descriptive_class_title: false
|
||||
descriptive_module_title: true
|
||||
add_method_class_prefix: false
|
||||
add_member_class_prefix: false
|
||||
|
@ -11,7 +11,7 @@ processor:
|
||||
- skip_empty_modules: true
|
||||
renderer:
|
||||
type: markdown
|
||||
descriptive_class_title: true
|
||||
descriptive_class_title: false
|
||||
descriptive_module_title: true
|
||||
add_method_class_prefix: false
|
||||
add_member_class_prefix: false
|
||||
|
@ -11,7 +11,7 @@ processor:
|
||||
- skip_empty_modules: true
|
||||
renderer:
|
||||
type: markdown
|
||||
descriptive_class_title: true
|
||||
descriptive_class_title: false
|
||||
descriptive_module_title: true
|
||||
add_method_class_prefix: false
|
||||
add_member_class_prefix: false
|
||||
|
@ -11,7 +11,7 @@ processor:
|
||||
- skip_empty_modules: true
|
||||
renderer:
|
||||
type: markdown
|
||||
descriptive_class_title: true
|
||||
descriptive_class_title: false
|
||||
descriptive_module_title: true
|
||||
add_method_class_prefix: false
|
||||
add_member_class_prefix: false
|
||||
|
@ -11,7 +11,7 @@ processor:
|
||||
- skip_empty_modules: true
|
||||
renderer:
|
||||
type: markdown
|
||||
descriptive_class_title: true
|
||||
descriptive_class_title: false
|
||||
descriptive_module_title: true
|
||||
add_method_class_prefix: false
|
||||
add_member_class_prefix: false
|
||||
|
143
docs/_src/api/api/query_classifier.md
Normal file
143
docs/_src/api/api/query_classifier.md
Normal file
@ -0,0 +1,143 @@
|
||||
<a name="base"></a>
|
||||
# Module base
|
||||
|
||||
<a name="base.BaseQueryClassifier"></a>
|
||||
## BaseQueryClassifier Objects
|
||||
|
||||
```python
|
||||
class BaseQueryClassifier(BaseComponent)
|
||||
```
|
||||
|
||||
Abstract class for Query Classifiers
|
||||
|
||||
<a name="sklearn"></a>
|
||||
# Module sklearn
|
||||
|
||||
<a name="sklearn.SklearnQueryClassifier"></a>
|
||||
## SklearnQueryClassifier Objects
|
||||
|
||||
```python
|
||||
class SklearnQueryClassifier(BaseQueryClassifier)
|
||||
```
|
||||
|
||||
A node to classify an incoming query into one of two categories using a lightweight sklearn model. Depending on the result, the query flows to a different branch in your pipeline
|
||||
and the further processing can be customized. You can define this by connecting the further pipeline to either `output_1` or `output_2` from this node.
|
||||
|
||||
**Example**:
|
||||
|
||||
```python
|
||||
|{
|
||||
|pipe = Pipeline()
|
||||
|pipe.add_node(component=SklearnQueryClassifier(), name="QueryClassifier", inputs=["Query"])
|
||||
|pipe.add_node(component=elastic_retriever, name="ElasticRetriever", inputs=["QueryClassifier.output_2"])
|
||||
|pipe.add_node(component=dpr_retriever, name="DPRRetriever", inputs=["QueryClassifier.output_1"])
|
||||
|
||||
|# Keyword queries will use the ElasticRetriever
|
||||
|pipe.run("kubernetes aws")
|
||||
|
||||
|# Semantic queries (questions, statements, sentences ...) will leverage the DPR retriever
|
||||
|pipe.run("How to manage kubernetes on aws")
|
||||
|
||||
```
|
||||
|
||||
Models:
|
||||
|
||||
Pass your own `Sklearn` binary classification model or use one of the following pretrained ones:
|
||||
1) Keywords vs. Questions/Statements (Default)
|
||||
query_classifier can be found [here](https://ext-models-haystack.s3.eu-central-1.amazonaws.com/gradboost_query_classifier/model.pickle)
|
||||
query_vectorizer can be found [here](https://ext-models-haystack.s3.eu-central-1.amazonaws.com/gradboost_query_classifier/vectorizer.pickle)
|
||||
output_1 => question/statement
|
||||
output_2 => keyword query
|
||||
[Readme](https://ext-models-haystack.s3.eu-central-1.amazonaws.com/gradboost_query_classifier/readme.txt)
|
||||
|
||||
|
||||
2) Questions vs. Statements
|
||||
query_classifier can be found [here](https://ext-models-haystack.s3.eu-central-1.amazonaws.com/gradboost_query_classifier_statements/model.pickle)
|
||||
query_vectorizer can be found [here](https://ext-models-haystack.s3.eu-central-1.amazonaws.com/gradboost_query_classifier_statements/vectorizer.pickle)
|
||||
output_1 => question
|
||||
output_2 => statement
|
||||
[Readme](https://ext-models-haystack.s3.eu-central-1.amazonaws.com/gradboost_query_classifier_statements/readme.txt)
|
||||
|
||||
See also the [tutorial](https://haystack.deepset.ai/tutorials/pipelines) on pipelines.
|
||||
|
||||
<a name="sklearn.SklearnQueryClassifier.__init__"></a>
|
||||
#### \_\_init\_\_
|
||||
|
||||
```python
|
||||
| __init__(model_name_or_path: Union[
|
||||
| str, Any
|
||||
| ] = "https://ext-models-haystack.s3.eu-central-1.amazonaws.com/gradboost_query_classifier/model.pickle", vectorizer_name_or_path: Union[
|
||||
| str, Any
|
||||
| ] = "https://ext-models-haystack.s3.eu-central-1.amazonaws.com/gradboost_query_classifier/vectorizer.pickle")
|
||||
```
|
||||
|
||||
**Arguments**:
|
||||
|
||||
- `model_name_or_path`: Gradient boosting based binary classifier to classify between keyword vs statement/question
|
||||
queries or statement vs question queries.
|
||||
- `vectorizer_name_or_path`: A ngram based Tfidf vectorizer for extracting features from query.
|
||||
|
||||
<a name="transformers"></a>
|
||||
# Module transformers
|
||||
|
||||
<a name="transformers.TransformersQueryClassifier"></a>
|
||||
## TransformersQueryClassifier Objects
|
||||
|
||||
```python
|
||||
class TransformersQueryClassifier(BaseQueryClassifier)
|
||||
```
|
||||
|
||||
A node to classify an incoming query into one of two categories using a (small) BERT transformer model.
|
||||
Depending on the result, the query flows to a different branch in your pipeline and the further processing
|
||||
can be customized. You can define this by connecting the further pipeline to either `output_1` or `output_2`
|
||||
from this node.
|
||||
|
||||
**Example**:
|
||||
|
||||
```python
|
||||
|{
|
||||
|pipe = Pipeline()
|
||||
|pipe.add_node(component=TransformersQueryClassifier(), name="QueryClassifier", inputs=["Query"])
|
||||
|pipe.add_node(component=elastic_retriever, name="ElasticRetriever", inputs=["QueryClassifier.output_2"])
|
||||
|pipe.add_node(component=dpr_retriever, name="DPRRetriever", inputs=["QueryClassifier.output_1"])
|
||||
|
||||
|# Keyword queries will use the ElasticRetriever
|
||||
|pipe.run("kubernetes aws")
|
||||
|
||||
|# Semantic queries (questions, statements, sentences ...) will leverage the DPR retriever
|
||||
|pipe.run("How to manage kubernetes on aws")
|
||||
|
||||
```
|
||||
|
||||
Models:
|
||||
|
||||
Pass your own `Transformer` binary classification model from file/huggingface or use one of the following
|
||||
pretrained ones hosted on Huggingface:
|
||||
1) Keywords vs. Questions/Statements (Default)
|
||||
model_name_or_path="shahrukhx01/bert-mini-finetune-question-detection"
|
||||
output_1 => question/statement
|
||||
output_2 => keyword query
|
||||
[Readme](https://ext-models-haystack.s3.eu-central-1.amazonaws.com/gradboost_query_classifier/readme.txt)
|
||||
|
||||
|
||||
2) Questions vs. Statements
|
||||
`model_name_or_path`="shahrukhx01/question-vs-statement-classifier"
|
||||
output_1 => question
|
||||
output_2 => statement
|
||||
[Readme](https://ext-models-haystack.s3.eu-central-1.amazonaws.com/gradboost_query_classifier_statements/readme.txt)
|
||||
|
||||
|
||||
See also the [tutorial](https://haystack.deepset.ai/tutorials/pipelines) on pipelines.
|
||||
|
||||
<a name="transformers.TransformersQueryClassifier.__init__"></a>
|
||||
#### \_\_init\_\_
|
||||
|
||||
```python
|
||||
| __init__(model_name_or_path: Union[Path, str] = "shahrukhx01/bert-mini-finetune-question-detection", use_gpu: bool = True)
|
||||
```
|
||||
|
||||
**Arguments**:
|
||||
|
||||
- `model_name_or_path`: Transformer based fine tuned mini bert model for query classification
|
||||
- `use_gpu`: Whether to use GPU (if available).
|
||||
|
@ -2,7 +2,7 @@
|
||||
# Module base
|
||||
|
||||
<a name="base.BaseReader"></a>
|
||||
## BaseReader Objects
|
||||
## BaseReader
|
||||
|
||||
```python
|
||||
class BaseReader(BaseComponent)
|
||||
@ -30,7 +30,7 @@ Wrapper method used to time functions.
|
||||
# Module farm
|
||||
|
||||
<a name="farm.FARMReader"></a>
|
||||
## FARMReader Objects
|
||||
## FARMReader
|
||||
|
||||
```python
|
||||
class FARMReader(BaseReader)
|
||||
@ -361,7 +361,7 @@ Usage:
|
||||
# Module transformers
|
||||
|
||||
<a name="transformers.TransformersReader"></a>
|
||||
## TransformersReader Objects
|
||||
## TransformersReader
|
||||
|
||||
```python
|
||||
class TransformersReader(BaseReader)
|
||||
@ -450,7 +450,7 @@ Dict containing query and answers
|
||||
# Module table
|
||||
|
||||
<a name="table.TableReader"></a>
|
||||
## TableReader Objects
|
||||
## TableReader
|
||||
|
||||
```python
|
||||
class TableReader(BaseReader)
|
||||
|
@ -2,7 +2,7 @@
|
||||
# Module base
|
||||
|
||||
<a name="base.BaseGraphRetriever"></a>
|
||||
## BaseGraphRetriever Objects
|
||||
## BaseGraphRetriever
|
||||
|
||||
```python
|
||||
class BaseGraphRetriever(BaseComponent)
|
||||
@ -11,7 +11,7 @@ class BaseGraphRetriever(BaseComponent)
|
||||
Base classfor knowledge graph retrievers.
|
||||
|
||||
<a name="base.BaseRetriever"></a>
|
||||
## BaseRetriever Objects
|
||||
## BaseRetriever
|
||||
|
||||
```python
|
||||
class BaseRetriever(BaseComponent)
|
||||
@ -84,7 +84,7 @@ position in the ranking of documents the correct document is.
|
||||
# Module sparse
|
||||
|
||||
<a name="sparse.ElasticsearchRetriever"></a>
|
||||
## ElasticsearchRetriever Objects
|
||||
## ElasticsearchRetriever
|
||||
|
||||
```python
|
||||
class ElasticsearchRetriever(BaseRetriever)
|
||||
@ -152,7 +152,7 @@ that are most relevant to the query.
|
||||
- `index`: The name of the index in the DocumentStore from which to retrieve documents
|
||||
|
||||
<a name="sparse.ElasticsearchFilterOnlyRetriever"></a>
|
||||
## ElasticsearchFilterOnlyRetriever Objects
|
||||
## ElasticsearchFilterOnlyRetriever
|
||||
|
||||
```python
|
||||
class ElasticsearchFilterOnlyRetriever(ElasticsearchRetriever)
|
||||
@ -179,7 +179,7 @@ that are most relevant to the query.
|
||||
- `index`: The name of the index in the DocumentStore from which to retrieve documents
|
||||
|
||||
<a name="sparse.TfidfRetriever"></a>
|
||||
## TfidfRetriever Objects
|
||||
## TfidfRetriever
|
||||
|
||||
```python
|
||||
class TfidfRetriever(BaseRetriever)
|
||||
@ -235,7 +235,7 @@ Performing training on this class according to the TF-IDF algorithm.
|
||||
# Module dense
|
||||
|
||||
<a name="dense.DensePassageRetriever"></a>
|
||||
## DensePassageRetriever Objects
|
||||
## DensePassageRetriever
|
||||
|
||||
```python
|
||||
class DensePassageRetriever(BaseRetriever)
|
||||
@ -426,7 +426,7 @@ None
|
||||
Load DensePassageRetriever from the specified directory.
|
||||
|
||||
<a name="dense.TableTextRetriever"></a>
|
||||
## TableTextRetriever Objects
|
||||
## TableTextRetriever
|
||||
|
||||
```python
|
||||
class TableTextRetriever(BaseRetriever)
|
||||
@ -595,7 +595,7 @@ None
|
||||
Load TableTextRetriever from the specified directory.
|
||||
|
||||
<a name="dense.EmbeddingRetriever"></a>
|
||||
## EmbeddingRetriever Objects
|
||||
## EmbeddingRetriever
|
||||
|
||||
```python
|
||||
class EmbeddingRetriever(BaseRetriever)
|
||||
@ -688,7 +688,7 @@ Embeddings, one per input document
|
||||
# Module text2sparql
|
||||
|
||||
<a name="text2sparql.Text2SparqlRetriever"></a>
|
||||
## Text2SparqlRetriever Objects
|
||||
## Text2SparqlRetriever
|
||||
|
||||
```python
|
||||
class Text2SparqlRetriever(BaseGraphRetriever)
|
||||
|
@ -2,7 +2,7 @@
|
||||
# Module base
|
||||
|
||||
<a name="base.BaseSummarizer"></a>
|
||||
## BaseSummarizer Objects
|
||||
## BaseSummarizer
|
||||
|
||||
```python
|
||||
class BaseSummarizer(BaseComponent)
|
||||
@ -37,7 +37,7 @@ List of Documents, where Document.text contains the summarization and Document.m
|
||||
# Module transformers
|
||||
|
||||
<a name="transformers.TransformersSummarizer"></a>
|
||||
## TransformersSummarizer Objects
|
||||
## TransformersSummarizer
|
||||
|
||||
```python
|
||||
class TransformersSummarizer(BaseSummarizer)
|
||||
|
@ -2,7 +2,7 @@
|
||||
# Module base
|
||||
|
||||
<a name="base.BaseTranslator"></a>
|
||||
## BaseTranslator Objects
|
||||
## BaseTranslator
|
||||
|
||||
```python
|
||||
class BaseTranslator(BaseComponent)
|
||||
@ -33,7 +33,7 @@ Method that gets executed when this class is used as a Node in a Haystack Pipeli
|
||||
# Module transformers
|
||||
|
||||
<a name="transformers.TransformersTranslator"></a>
|
||||
## TransformersTranslator Objects
|
||||
## TransformersTranslator
|
||||
|
||||
```python
|
||||
class TransformersTranslator(BaseTranslator)
|
||||
|
Loading…
x
Reference in New Issue
Block a user