mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-12-24 05:28:42 +00:00
Fix another self.device/s typo (#1734)
* Fix yet another self.device(s) typo * Add typing to 'initialize_device_settings' to try prevent future issues * Fix bug in Tutorial5 * Fix the same bug in the notebook Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
This commit is contained in:
parent
8082549663
commit
85a08d671a
@ -64,7 +64,7 @@ es_server = Popen(['elasticsearch-7.9.2/bin/elasticsearch'],
|
||||
```python
|
||||
from haystack.modeling.utils import initialize_device_settings
|
||||
|
||||
device, n_gpu = initialize_device_settings(use_cuda=True)
|
||||
devices, n_gpu = initialize_device_settings(use_cuda=True)
|
||||
```
|
||||
|
||||
|
||||
@ -189,7 +189,7 @@ the model as the answer span (i.e. SQuAD style)
|
||||
|
||||
```python
|
||||
# Evaluate Reader on its own
|
||||
reader_eval_results = reader.eval(document_store=document_store, device=device, label_index=label_index, doc_index=doc_index)
|
||||
reader_eval_results = reader.eval(document_store=document_store, device=devices[0], label_index=label_index, doc_index=doc_index)
|
||||
# Evaluation of Reader can also be done directly on a SQuAD-formatted file without passing the data to Elasticsearch
|
||||
#reader_eval_results = reader.eval_on_file("../data/nq", "nq_dev_subset_v2.json", device=device)
|
||||
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
from typing import Any, Iterator, Tuple
|
||||
from typing import Any, Iterator, Tuple, List
|
||||
|
||||
import logging
|
||||
import os
|
||||
@ -48,7 +48,7 @@ def set_all_seeds(seed: int, deterministic_cudnn: bool=False) -> None:
|
||||
torch.backends.cudnn.benchmark = False
|
||||
|
||||
|
||||
def initialize_device_settings(use_cuda: bool, local_rank: int = -1, multi_gpu: bool = True):
|
||||
def initialize_device_settings(use_cuda: bool, local_rank: int = -1, multi_gpu: bool = True) -> Tuple[List[torch.device], int]:
|
||||
"""
|
||||
Returns a list of available devices.
|
||||
|
||||
|
||||
@ -8,9 +8,8 @@
|
||||
"provenance": []
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
"name": "python3",
|
||||
"display_name": "Python 3.9.5 64-bit ('venv': venv)"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
@ -22,7 +21,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.9"
|
||||
"version": "3.9.5"
|
||||
},
|
||||
"widgets": {
|
||||
"application/vnd.jupyter.widget-state+json": {
|
||||
@ -14400,6 +14399,9 @@
|
||||
"collapsed": false
|
||||
}
|
||||
}
|
||||
},
|
||||
"interpreter": {
|
||||
"hash": "01829e1eb67c4f5275a41f9336c92adbb77a108c8fc957dfe99d03e96dd1f349"
|
||||
}
|
||||
},
|
||||
"cells": [
|
||||
@ -14928,7 +14930,7 @@
|
||||
"source": [
|
||||
"from haystack.modeling.utils import initialize_device_settings\n",
|
||||
"\n",
|
||||
"device, n_gpu = initialize_device_settings(use_cuda=True)"
|
||||
"devices, n_gpu = initialize_device_settings(use_cuda=True)"
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
@ -15397,7 +15399,7 @@
|
||||
"execution_count": 10,
|
||||
"source": [
|
||||
"# Evaluate Reader on its own\n",
|
||||
"reader_eval_results = reader.eval(document_store=document_store, device=device, label_index=label_index, doc_index=doc_index)\n",
|
||||
"reader_eval_results = reader.eval(document_store=document_store, device=devices[0], label_index=label_index, doc_index=doc_index)\n",
|
||||
"# Evaluation of Reader can also be done directly on a SQuAD-formatted file without passing the data to Elasticsearch\n",
|
||||
"#reader_eval_results = reader.eval_on_file(\"../data/nq\", \"nq_dev_subset_v2.json\", device=device)\n",
|
||||
"\n",
|
||||
|
||||
@ -40,7 +40,7 @@ def tutorial5_evaluation():
|
||||
# Code
|
||||
##############################################
|
||||
launch_es()
|
||||
device, n_gpu = initialize_device_settings(use_cuda=True)
|
||||
devices, n_gpu = initialize_device_settings(use_cuda=True)
|
||||
|
||||
# Download evaluation data, which is a subset of Natural Questions development set containing 50 documents
|
||||
doc_dir = "../data/nq"
|
||||
@ -109,7 +109,7 @@ def tutorial5_evaluation():
|
||||
eval_retriever = EvalDocuments()
|
||||
eval_reader = EvalAnswers(sas_model="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
|
||||
|
||||
## Evaluate Retriever on its own in closed domain fashion
|
||||
# Evaluate Retriever on its own in closed domain fashion
|
||||
if style == "retriever_closed":
|
||||
retriever_eval_results = retriever.eval(top_k=10, label_index=label_index, doc_index=doc_index)
|
||||
## Retriever Recall is the proportion of questions for which the correct document containing the answer is
|
||||
@ -120,7 +120,7 @@ def tutorial5_evaluation():
|
||||
|
||||
# Evaluate Reader on its own in closed domain fashion (i.e. SQuAD style)
|
||||
elif style == "reader_closed":
|
||||
reader_eval_results = reader.eval(document_store=document_store, device=device, label_index=label_index, doc_index=doc_index)
|
||||
reader_eval_results = reader.eval(document_store=document_store, device=devices[0], label_index=label_index, doc_index=doc_index)
|
||||
# Evaluation of Reader can also be done directly on a SQuAD-formatted file without passing the data to Elasticsearch
|
||||
#reader_eval_results = reader.eval_on_file("../data/nq", "nq_dev_subset_v2.json", device=device)
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user